This paper examines the effects of relaxing the assumption of classical linear elasticity that the loads act in their entirety on the undeformed shape. Instead, loads here are applied incrementally as deformation proceeds, and resulting fields are integrated. A formal statement of the attendant integrated elasticity theory is provided. A class of problems is identified for which this formulation is amenable to solution in closed form. Some results from these configurations are compared with linear elasticity and experimentally measured data. The comparisons indicate that, as deformation increases, integrated elasticity is capable of tracking the physical response better than linear elasticity.
Issue Section:
Technical Papers
1.
Frisch-Fay
, R.
, 1962, Flexible Bars
, Butterworth, Inc.
Washington.2.
Griffith
, A. A.
, 1920, “The Phenomena of Rupture and Flow in Solids
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 221
, pp. 163
–198
.3.
Truesdell
, C.
, 1952, “The Mechanical Foundations of Elasticity and Fluid Mechanics
,” J. Rational Mech. Anal
, 1
pp. 125
–300
.4.
Murnaghan
, F. D.
, 1949, “The Foundations of the Theory of Elasticity
,” in: Non-Linear Problems in Mechanics of Continua
, American Mathematical Society
, New York, pp. 158
–174
.5.
Jaumann
, G.
, 1911, “Geschlossenes System Physikalischer und Chemischer Differentialgesetze
,” Akad.Wiss. Wien Sitzber. (IIa)
, 120
, pp. 385
–530
.6.
Hencky
, H.
, 1929, “Das Superpositionsgesetz Eines Endlich Deformierten Relaxasionsfähigen Elastischen Kontinuums und Seine Bedeutung für Eine Exakte Ableitung der Gleichungen für die Zähe Flüssigkeit in der Eulerschen Form
” Ann. Phys.
0003-3804, 5
, pp. 617
–630
.7.
Fung
, Y. C.
, 1965, Foundations of Solid Mechanics
, Prentice–Hall, Inc.
Englewood Cliffs, NJ.8.
Sokolnikoff
, I. S.
, 1956, Mathematical Theory of Elasticity
, 2nd ed., McGraw–Hill
, New York.9.
Ludwik
, P.
, 1909 Elemente der Technologischen Mechanik
, Springer
, Berlin.10.
Green
, A. E.
, 1956, “Simple Extension of a Hypo-Elastic Body of Grade Zero Mechanics
,” J. Rational Mech. Anal.
5
, pp. 637
–642
.11.
Rivlin
, R. S.
, and Saunders
, D. W.
, 1951, “Large Elastic Deformations of Isotropic Materials VII. Experiments on the Deformation of Rubber
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 243
, pp. 251
–288
.12.
Assaad
, A. T.
, and Sinclair
, G. B.
, 2005, “An Experimental Study of the Applicability of Integrated Elasticity to the Tension and Torsion of Rubber Materials
,” Report No. ME-MA7-05, Department of Mechanical Engineering, Louisiana State University
, Baton Rouge.13.
Treloar
, L. R. G.
, 1975, The Physics of Rubber Elasticity
, 3rd ed., Clarendon Press
, Oxford.14.
Ward
, I. M.
, and Sweeney
, J.
, 2004, The Mechanical Properties of Solid Polymers
, 2nd ed., Wiley
, Sussex, UK.15.
Hart-Smith
, L. J.
, 1966, “Elasticity Parameters for Finite Deformations of Rubber-Like Materials
,” Z. Angew. Math. Phys.
0044-2275 17
, pp. 608
–626
.16.
Assaad
, A. T.
, and Sinclair
, G. B.
, 2000, “Some Experiments on the Size-Versus-Pressure Response of Balloons
,” Report No. SM 00-2, Department of Mechanical Engineering, Carnegie Mellon University
, Pittsburgh.17.
Mansfield
, E. H.
, 1967, “On the Stresses Near a Crack in an Elastic Sheet
,” Technical Report No. 67030, Royal Aircraft Establishment
, Cranfield, UK.18.
Kolossoff
, G.
, 1910, On an Application of the Theory of Complex Variables to the Two-Dimensional Problem of Elasticity Theory
,” Ph.D. dissertation, St. Petersburg; See also
Kolossoff
, G.
, 1914,Z. Angew. Math. Phys.
62
, pp. 384
–409
.19.
Inglis
, C. E.
, 1913, “Stresses in a Plate due to the Presence of Cracks and Sharp Corners
,” Trans. INA
55
, pp. 219
–241
.20.
Kondo
, M.
, and Sinclair
, G. B.
, 1982, “Stress and Displacement Fields for an Elliptical Hole in a Thick Elastic Plate Under tension
,” Report No. SM 82-15, Department of Mechanical Engineering, Carnegie Mellon University
, Pittsburgh.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.