This paper presents a mathematical model for frictional elastic-plastic sphere-on-flat contacts at sliding incipient. The model is developed based on theoretical work on contact mechanics in conjunction with finite-element results. It incorporates the effects of friction loading on the contact pressure, the mode of deformation, and the area of contact. The shear strength of the contact interface is, in this paper, assumed to be proportional to the contact pressure with a limiting value that is below the bulk shear strength of the sphere. Other plausible interfacial-shear-strength characteristics may also be implemented into the contact model in a similar manner. The model is used to analyze the frictional behavior of a sphere-on-flat contact where the experimental data suggest that the interfacial shear strength is similar in nature to the one implemented in the model. The theoretical results are consistent with the experimental data in all key aspects. This sphere-on-flat contact model may be used as a building block to develop an asperity-based contact model of rough surfaces with friction loading. It may also serve in the modeling of boundary-lubricated sliding contacts where the interfacial shear strength in each micro-contact is coupled with its flash temperature and related to the lubricant/surface physical-chemical behavior.

1.
Levinson
,
O.
,
Etsion
,
I.
, and
Halperin
,
G.
, 2003, “
An Experimental Investigation of Elastic Plastic Contact and Friction of a Sphere on Flat
,”
Proc. of Contact Mechanics—Friction: Modeling and Experiment
,
STLE/ASME Joint International Tribology Conference
, pp.
19
23
.
2.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
57
63
.
3.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
4.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
0742-4787,
125
, pp.
499
506
.
5.
Tabor
,
D.
, 1959, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London, Ser. A
1364-5021,
251
, pp.
378
393
.
6.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
, UK.
7.
Zhao
,
Y.
,
Maietta
,
D.
, and
Chang
,
L.
, 2000, “
An Asperity Micro-Contact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
8.
Zhang
,
H.
,
Chang
,
L.
,
Webster
,
M. N.
, and
Jackson
,
A.
, 2003, “
Effects of Friction on the Contact and Deformation Behavior in Sliding Asperity Contacts
,”
Tribol. Trans.
1040-2004,
46
, pp.
514
521
.
9.
Briscoe
,
B. J.
,
Scrutton
,
B.
, and
Willis
,
R. F.
, 1973, “
The Shear Strength of Thin Lubricant Films
,”
Proc. R. Soc. London, Ser. A
1364-5021,
333
, pp.
99
114
.
10.
Timsit
,
R. S.
, and
Pelow
,
C. V.
, 1992, “
Shear Strength and Tribological Properties of Stearic Acid Films
,”
ASME J. Tribol.
0742-4787,
114
, pp.
150
166
.
11.
Tabor
,
D.
, 1982, “
The Role of Surface and Intermolecular Forces in Thin Film Lubrication
,” in
Microscopic Aspects of Adhesion and Lubrication
,
J.-M.
Georges
, ed.,
Elsevier
,
Amsterdam
, pp.
651
679
.
12.
Hamilton
,
G. M.
, 1983, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
197
, pp.
53
59
.
13.
Francis
,
H. A.
, 1976, “
Phenomenological Analysis of Plastic Spherical Indentation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
76
, pp.
272
281
.
14.
Abbott
,
E. J.
, and
Firestone
,
F. A.
, 1933, “
Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
55
(
9
), pp.
569
572
.
15.
Jeng
,
Y. R.
, and
Wang
,
P. Y.
, 2003, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
0742-4787,
125
, pp.
232
240
.
16.
Johnson
,
K. L.
, 1968, “
Deformation of a Plastic Wedge by a Rigid Flat Die Under the Action of a Tangential Force
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
395
340
.
17.
Kayaba
,
T.
, and
Kato
,
K.
, 1978, “
Theoretical Analysis of Junction Growth
,”
Technol. Rep., Tohoku Univ.
,
43
, pp.
1
10
.
18.
McFadden
,
C. F.
, and
Gellman
,
A. J.
, 1998, “
Metallic Friction: The Effect of Molecular Adsorbates
,”
Surf. Sci.
0039-6028,
409
, pp.
171
182
.
19.
Bowden
,
F. P.
, and
Young
,
J. E.
, 1951, “
Friction of Clean Metals and the Influence of Adsorbed Films
,”
Proc. R. Soc. London, Ser. A
1364-5021,
208
, pp.
311
325
.
20.
Parker
,
R. C.
, and
Hatch
,
D.
, 1950, “
The Static Coefficient of Friction and the Area of Contact
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
63
, pp.
185
197
.
21.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
22.
Etsion
,
I.
,
Levinson
,
O.
,
Halperin
,
G.
, and
Varenberg
,
M.
, 2005, “
Experimental Investigation of the Elastic-Plastic Contact Area and Static Friction of a Sphere on Flat
,”
ASME J. Tribol.
0742-4787,
127
, pp.
47
50
.
You do not currently have access to this content.