This paper presents a study of the deformation behavior of single-walled carbon nanotubes (SWNTs) subjected to extension and twist. The interatomic force description is provided by the Tersoff-Brenner potential for carbon. The rolling of a flat graphene sheet into a SWNT is first simulated by minimizing the energy per atom, the end result being the configuration of an undeformed SWNT. The Cauchy-Born rule is then used to connect the atomistic and continuum descriptions of the deformation of SWNTs, and leads to a multilength scale mechanics framework for simulating deformation of SWNTs under applied loads. Coupled extension and twist of SWNTs is considered next. As an alternative to the Cauchy-Born rule for coupled extension-twist problems, a direct map is formulated. Analytic expressions are derived for the deformed bond lengths using the Cauchy-Born rule and the direct map for this class of deformations. Numerical results are presented for kinematic coupling, for imposed extension and imposed twist problems, using the Cauchy-Born rule as well as the direct map, for representative chiral, armchair and zig-zag SWNTs. Results from both these approaches are carefully compared.

2.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson.
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
381
, pp.
678
680
.
3.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
14013
14019
.
4.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
5.
Salvetat
,
J.-P.
,
Briggs
,
G. A. D.
,
Bonard
,
J.-M.
,
Bacsa
,
R. R.
, and
Kulik
,
A. J.
, 1999, “
Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
944
947
.
6.
Tombler
,
T. W.
,
Zhou
,
C.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H.
,
Liu
,
L.
,
Jayanthi
,
C. S.
,
Tang
,
M.
, and
Wu
,
S.-Y.
, 2000, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature (London)
0028-0836,
405
, pp.
769
772
.
7.
Yu
,
M.-F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
, 2000, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
.”
Phys. Rev. Lett.
0031-9007,
84
, pp.
5552
5555
.
8.
Yu
,
M.-F.
,
Dyer
,
M. J.
,
Skidmore
,
G. D.
,
Rohrs
,
H. W.
,
Lu
,
X.
,
Ausman
,
K. D.
,
von Ehr
,
J. R.
, and
Ruoff
,
R. S.
, 1999, “
Three-Dimensional Manipulation of Carbon Nanotubes Under a Scanning Electron Microscope
,”
Nanotechnology
0957-4484,
10
, pp.
244
252
.
9.
Muster
,
J.
,
Burghard
,
M.
,
Roth
,
S.
,
Duesberg
,
G. S.
,
Hernández
,
E.
, and
Rubio
,
A
, 1998, “
Scanning Force Microscopy Characterization of Individual Carbon Nanotubes on Electrode Arrays
,”
J. Vac. Sci. Technol. B
0734-211X,
16
, pp.
2796
2801
.
10.
Lourie
,
O.
, and
Wagner
,
H. D.
, 1998, “
Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy
,”
J. Mater. Res.
0884-2914,
13
, pp.
2418
2422
.
11.
Pan.
Z. W.
,
Xie
,
S. S.
,
Lu
,
L.
,
Chang
,
B. H.
,
Sun
,
L. F.
,
Zhou
,
W. Y.
,
Wang
,
G.
, and
Zhang
,
D. L.
, 1999, “
Tensile Tests of Ropes of Very Long Aligned Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
3152
3154
.
12.
Sazonova
,
V.
,
Yaish
,
Y.
,
Üstünel
,
H.
,
Roundy
,
D.
,
Arias
,
T. A.
, and
McEuen
,
P. L.
, 2004, “
A Tunable Carbon Nanotube Electromechanical Oscillator
,”
Nature (London)
0028-0836,
431
, pp.
284
287
.
13.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
, 1992, “
Energetics of Nanoscale Graphitic Tubules
.”
Phys. Rev. B
0163-1829,
45
, pp.
12592
12595
.
14.
Overney
,
G.
,
Zhong
,
W.
, and
Tománek
,
D.
, 1993, “
Structural Rigidity and Low-Frequency Vibrational Modes of Long Carbon Tubules
,”
Z. Phys. D: At., Mol. Clusters
0178-7683,
27
, pp.
93
96
.
15.
Molina
,
J. M.
,
Savinsky
,
S. S.
, and
Khokhriakov
,
N. V.
, 1996, “
A Tight-Binding Model for Calculations of Structures and Properties of Graphitic Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
, pp.
4652
4656
.
16.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
17.
Cornwell
,
C. F.
, and
Willi
,
L. T.
, 1997, “
Elastic Properties of Single-Walled Carbon Nanotubes in Compression
,”
Solid State Commun.
0038-1098,
101
, pp.
555
558
.
18.
Lu
,
J. P.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanopores
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
1297
1300
.
19.
Halicioglu
,
T.
, 1998, “
Stress Calculations for Carbon Nanotubes
,”
Thin Solid Films
0040-6090,
312
, pp.
11
14
.
20.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and Bx Cy Nz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4502
4505
.
21.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1999, “
Elastic Properties of Single-Wall Nanotubes
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
68
, pp.
287
292
.
22.
Goze
,
C.
,
Vaccarini
,
L.
,
Henrard
,
L.
,
Bernier
,
P.
,
Hernández
,
E.
, and
Rubio
,
A.
, 1999, “
Elastic and Mechanical Properties of Carbon Nanotubes
,”
Synth. Met.
0379-6779,
103
, pp.
2500
2501
.
23.
Sánchez-Portal
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejón
,
P.
, 1999, “
Ab Initio Structural, Elastic and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
, pp.
12678
12688
.
24.
Lier
,
G. V.
,
Alsenoy
,
C. V.
,
Doran
,
V. V.
, and
Geerlings
,
P.
, 2000, “
Ab Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene
,”
Chem. Phys. Lett.
0009-2614,
326
, pp.
181
185
.
25.
Popov
,
V. N.
,
van Doren
,
V. E.
, and
Balkanski
,
M.
, 2000, “
Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
61
, pp.
3078
3084
.
26.
Prylutskyy
,
Y. I.
,
Durov
,
S. S.
,
Ogloblya
,
O. V.
,
Buzaneva
,
E. V.
, and
Scharff
P.
, 2000, “
Molecular Dynamics Simulations of Mechanical, Vibrational and Electronic Properties of Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
17
, pp.
352
355
.
27.
Vaccarini
,
L.
,
Goze
,
C.
,
Henrard
,
L.
,
Hernández
,
E.
,
Bernier
,
P.
, and
Rubio
,
A.
, 2000, “
Mechanical and Electronic Properties of Carbon and Boron-Nitride Nanotubes
,”
Carbon
0008-6223,
38
, pp.
1681
1690
.
28.
Zhou
,
G.
,
Duan
,
W.
, and
Gu
,
B.
, 2001, “
First Principles Study on Morphology and Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
333
, pp.
344
349
.
29.
Friesecke
,
G.
, and
James
,
R. D.
, 2000, “
A Scheme for the Passage from Atomic to Continuum Theory for Thin Films, Nanotubes and Nanorods
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1519
1540
.
30.
Li
,
C.
, and
Chou
,
T.-W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2487
2499
.
31.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
32.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
, 2003, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
429
442
.
33.
Liu
,
B.
,
Jiang
,
H.
,
Johnson
,
H. T.
, and
Huang
,
Y.
, 2004, “
The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
1
26
.
34.
Tersoff
,
J.
, 1988, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
0163-1829,
37
, pp.
6991
7000
.
35.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
0163-1829,
42
, pp.
9458
9471
.
36.
Tadmor
,
E. B.
,
Smith
,
G. S.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Mixed Finite Element and Atomistic Formulation for Complex Crystals
,”
Phys. Rev. B
0163-1829,
59
, pp.
235
245
.
37.
Broyden
,
C. G.
, 1970, “
The Convergence of a Class of Double-Rank Minimization Algorithms
,”
J. Inst. Math. Appl.
0020-2932
6
, pp.
76
90
.
38.
Fletcher
,
R.
, 1970, “
A New Approach to Variable Metric Algorithms
,”
Comput. J.
0010-4620,
13
, pp.
317
322
.
39.
Goldfarb
,
D.
, 1970, “
A Family of Variable Metric Updates Derived by Variational Means
,”
Math. Comput.
0025-5718,
24
, pp.
23
26
.
40.
Shanno
,
D. F.
1970, “
Conditioning of Quasi-Newton Methods for Function Minimization
,”
Math. Comput.
0025-5718,
24
, pp.
647
656
.
41.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2002, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1941
1977
.
42.
Chandraseker
,
K.
,
Mukherjee
,
S.
,
Mukherjee
,
Y. X.
, 2005, “
Modifications to the Cauchy-Born Rule: Applications in the Deformation of Single-walled Carbon Nanotubes
” (submitted).
43.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Jorio
,
A.
, 2004, “
Unusual Properties and Structure of Carbon Nanotubes
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
247
278
.
44.
Fung
,
Y. C.
, and
Tong
,
P.
, 2001,
Classical and Computational Solid Mechanics
,
World Scientific
, Singapore, pp.
539
543
.
45.
Steigmann
,
D. J.
,
Ogden
,
R. W.
, 1999, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
437
474
.
You do not currently have access to this content.