It is shown that extended irreversible thermodynamics (EIT) provides a unified description of a great variety of processes, including matter diffusion, thermo-diffusion, suspensions, and fluid flows in porous media. This is achieved by enlarging the set of classical variables, as mass, momentum and temperature by the corresponding fluxes of mass, momentum and heat. For simplicity, we consider only Newtonian fluids and restrict ourselves to a linear analysis: quadratic and higher order terms in the fluxes are neglected. In the case of diffusion in a binary mixture, the extra flux variable is the diffusion flux of one the constituents, say the solute. In thermo-diffusion, one adds the heat flux to the set of variables. The main result of the present approach is that the traditional equations of Fick, Fourier, Soret, and Dufour are replaced by time-evolution equations for the matter and heat fluxes, such generalizations are useful in high-frequency processes. It is also shown that the analysis can be easily extended to the study of particle suspensions in fluids and to flows in porous media, when such systems can be viewed as binary mixtures with a solid and a fluid component.

1.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Thermodynamics
,”
Phys. Rev.
0031-899X,
37
, pp.
405
426
.
2.
Prigogine
,
I.
, 1961,
Introduction to Thermodynamics of Irreversible Processes
,
Interscience
, New York.
3.
Meixner
,
J.
, 1943, “
Zur Thermodynamik der Irreversiblen Prozessen in Gases mit Chemisch Reagierenden, Dissozierenden und Anregbaren Komponenten
,”
Ann. Phys.
0003-3804,
43
, p.
244
.
4.
de Groot
,
S. R.
, and
Mazur
,
P.
, 1962,
Non-equilibrium Thermodynamics
,
North-Holland
, Amsterdam.
5.
Jou
,
D.
,
Casas-Vazquez
,
J.
, and
Lebon
,
G.
, 2001,
Extended Irreversible Thermodynamics
, 3rd ed.,
Springer
, Berlin.
6.
Muller
,
I.
, and
Ruggeri
,
T.
, 1998,
Rational Extended Thermodynamics
,
Springer
, New York.
7.
Cattaneo
,
C.
, 1948, “
Sur une Forme de l’Équation de la Chaleur Éliminant le Paradoxe d’une Propagation Instantanée
,”
Acad. Sci., Paris, C. R.
0001-4036,
247
, pp.
431
433
.
8.
Lebon
,
G.
,
Depireux
,
N.
, and
Lhuillier
,
D.
, 2002, “
A Non-equilibrium Thermodynamic Formulation of Suspensions of Rigid Particles in Moving Fluids
,” in:
S.
Dost
,
H.
Struchtrup
, and
I.
Dincer
, eds.,
Progress in Transport Phenomena
,
Elsevier
, Paris, pp.
423
428
.
9.
Lhuillier
,
D.
, 2001, “
Internal Variables and the Non-equilibrium Thermodynamics of Colloidal Suspensions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
96
, pp.
19
30
.
10.
Desaive
,
T.
, 2002, “
Thermo-convection dans les Milieux Poreux: Stabilité et Dynamique Non-linéaire
,” PhD thesis, Liège University.
You do not currently have access to this content.