This paper develops a nonlinear finite element formulation to analyze nanoindentation using an atomistic approach, which is conducive to observing the deformation mechanisms associated with the nanoindentation cycle. The simulation results of the current modified finite element formulation indicate that the microscopic plastic deformations of the thin film are caused by instabilities of the crystalline structure, and that the commonly used procedure for estimating the contact area in nanoindentation testing is invalid when the indentation size falls in the nanometer regime.
Issue Section:
Technical Papers
Keywords:
indentation,
hardness,
finite element analysis,
plastic deformation,
nanostructured materials
Topics:
Deformation,
Finite element analysis,
Nanoindentation,
Simulation,
Stress,
Testing,
Atoms,
Cycles
1.
Lucas
, B. N.
, Oliver
, W. C.
, and Swindeman
, J. E.
, 1998, “The Dynamics of Frequency-Specific, Depth-Sensing Indentation Test
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 522
, pp. 3
–14
.2.
Hay
, J. C.
, and Pharr
, G. M.
, 1998, “Experiment Investigation of the Sneddon Solution and an Improved Solution for the Analysis of Nanoindentation Data
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 522
, pp. 39
–44
.3.
Hay
, J. L.
, O’Hern
, M. E.
, and Oliver
, W. C.
, 1998, “The Importance of Contact Radius for Substrate-Independent Property Measurement of Thin Film
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 522
, pp. 27
–32
.4.
Lu
, W.
, and Komvopoulos
, K.
, 2001, “Nanotribological and Nanomechanical Properties of Ultrathin Amorphous Carbon Films Synthesized by Radio Frequency Sputtering
,” J. Tribol.
0742-4787, 123
, pp. 641
–650
.5.
Perez
, R.
, Payne
, M. C.
, and Simpson
, A. D.
, 1995, “First Principles Simulations of Silicon Nanoindentation
,” Phys. Rev. Lett.
0031-9007, 75
, pp. 4748
–4751
.6.
Zimmerman
, J. A.
, Kelchner
, C. L.
, Klein
, P. A.
, Hamilton
, J. C.
, and Foiles
, S. M.
, 2001, “Surface Step Effects on Nanoindentation
,” Phys. Rev. Lett.
0031-9007, 87
, p. 165507
.7.
Fuente
, O. R. de la
, Zimmerman
, J. A.
, Gonzalez
, M. A.
, Figuera
, J. de la
, Hamilton
, J. C.
, Pai
, W. W.
, and Rojo
, J. M.
, 2002, “Dislocation Emission around Nanoindentations on a (001) fcc Metal Surface Studied by Scanning Tunneling Microscopy and Atomistic Simulations
,” Phys. Rev. Lett.
0031-9007, 88
, p. 036101
.8.
Knap
, J.
, and Ortiz
, M.
, 2003, “Effect of Indenter-Radius Size on Au(001) Nanoindentation
,” Phys. Rev. Lett.
0031-9007, 90
, p. 226102
.9.
Jeng
, Y. R.
, and Tan
, C. M.
, 2002, “Computer Simulation of Tension Experiments of a Thin Film Using an Atomic Model
,” Phys. Rev. B
0163-1829, 65
, p. 174107
.10.
Jeng
, Y. R.
, and Tan
, C. M.
, 2004, “Theoretical Study of Dislocation Emission around a Nanoindentation Using a Static Atomistic Model
,” Phys. Rev. B
0163-1829, 69
, p. 104109
.11.
Rafii-Tabar
, H.
, 2000, “Modelling the Nano-Scale Phenomena in Condensed Matter Physics via Computer-Based Numerical Simulations
,” Phys. Rep.
0370-1573, 325
, pp. 239
–310
.12.
Inamura
, T.
, Suzuki
, H.
, and Takezawa
, N.
, 1991, “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool
,” Int. J. Jpn. Soc. Precis. Eng.
0916-782X, 25
, pp. 259
–266
.13.
Alber
, I.
, Bassani
, J. L.
, Khantha
, M.
, Vitek
, V.
, and Wang
, G. J.
, 1992, “Grain Boundaries as Heterorgeneous Systems: Atomic and Continuum Elastic Properties
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 339
, pp. 555
–586
.14.
Li
, J.
, Vliet
, K. J. V.
, Zhu
, T.
, Yip
, S.
, Suresh
, S.
, 2002, “Atomistic Mechanisms Governing Elastic Limit and Incipient Plasticity in Crystals
,” Nature (London)
0028-0836, 418
, pp. 307
–310
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.