In this paper a nonlinear analysis of nanotube based nano-electromechanical systems is reported. Assuming continuum mechanics, the complete nonlinear equation of the elastic line of the nanotube is derived and then numerically solved. In particular, we study singly and doubly clamped nanotubes under electrostatic actuation. The analysis emphasizes the importance of nonlinear kinematics effects in the prediction of the pull-in voltage of the device, a key design parameter. Moreover, the nonlinear behavior associated with finite kinematics (i.e., large deformations), neglected in previous studies, as well as charge concentrations at the tip of singly clamped nanotubes, are investigated in detail. We show that nonlinear kinematics results in an important increase in the pull-in voltage of doubly clamped nanotube devices, but that it is negligible in the case of singly clamped devices. Likewise, we demonstrate that charge concentration at the tip of singly clamped devices results in a significant reduction in pull-in voltage. By comparing numerical results to analytical predictions, closed form formulas are verified. These formulas provide a guide on the effect of the various geometrical variables and insight into the design of novel devices.

1.
Yang
Y. T.
,
Ekinci
K. L.
,
Huang
X. M. H.
,
Schiavone
L. M.
,
Roukes
M. L.
,
Zorman
C. A.
, and
Mehregany
M.
,
2001
, “
Monocrystalline Silicon Carbide Nanoelectromechanical Systems
,”
Appl. Phys. Lett.
,
78
, pp.
162
164
.
2.
Cleland
A. N.
, and
Roukes
M. L.
,
1996
, “
Fabrication of High Frequency Nanometer Scale Mechanical Resonators from Bulk Si Crystals
,”
Appl. Phys. Lett.
,
69
, pp.
2653
2655
.
3.
Erbe
A.
,
Blick
R. H.
,
Tilke
A.
,
Kriele
A.
, and
Kotthaus
P.
,
1998
, “
A Mechanical Flexible Tunneling Contact Operating at Radio Frequency
,”
Appl. Phys. Lett.
,
73
, pp.
3751
3753
.
4.
Huang
X. M. H.
,
Zorman
C. A.
,
Mehregany
M.
, and
Roukes
M. L.
,
2003
, “
Nanodevice Motion at Microwave Frequencies
,”
Nature (London)
,
421
, p.
496
496
.
5.
Roukes
M.L.
,
2000
, “
Nanoelectromechanical System
,” Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop.
6.
Abadal
G.
,
Davis
Z. J.
,
Helbo
B.
,
Borrise
X.
,
Ruiz
R.
,
Boisen
A.
,
Campabadal
F.
,
Esteve
J.
,
Figueras
E.
,
Perez-Murano
F.
, and
Barniol
N.
,
2001
, “
Electromechanical Model of a Resonating Nano-Cantilever-Based Sensor for High-Resolution and High-Sensitivity Mass Detection
,”
Nanotechnology
,
12
, pp.
100
104
.
7.
Martel
R.
,
Schmidt
T.
,
Shea
H. R.
,
Hertel
T.
, and
Avouris
Ph.
,
1998
, “
Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors
,”
Appl. Phys. Lett.
,
73
, pp.
2447
2449
.
8.
Cleland
A. N.
, and
Roukes
M. L.
,
1998
, “
A Nanometer-Scale Mechanical Electrometer
,”
Nature (London)
,
392
, pp.
160
162
.
9.
Akita
S.
,
Nakayama
Y.
,
Mizooka
S.
,
Takano
Y.
,
Okawa
T.
,
Miyatake
Y.
,
Yamanaka
S.
,
Tsuji
M.
, and
Nosaka
T.
,
2001
, “
Nanotweezers Consisting of Carbon Nanotubes Operating in an Atomic Force Microscope
,”
Appl. Phys. Lett.
,
79
, pp.
1691
1693
.
10.
Kim
P.
, and
Lieber
C. M.
,
1999
, “
Nanotube Nanotweezers
,”
Science
,
126
, pp.
2148
2150
.
11.
Rueckes
T.
,
Kim
K.
,
Joslevich
E.
,
Tseng
G. Y.
,
Cheung
C.
, and
Lieber
C. M.
,
2000
, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
,
289
, pp.
94
97
.
12.
Kinaret
J.
,
Nord
T.
, and
Viefers
S.
,
2003
, “
A Carbon-Nanotube-Based Nanorelay
,”
Appl. Phys. Lett.
82
, pp.
1287
1289
.
13.
Fennlmore
A. M.
,
Yuzvlnsky
T. D.
,
Han
W. Q.
,
Fuhrer
M. S.
,
Cummings
J.
, and
Zettl
A.
,
2003
, “
Rotational Actuator Based on Carbon Nanotubes
,”
Nature (London)
,
424
, pp.
408
410
.
14.
Ke
C.-H.
, and
Espinosa
H. D.
,
2004
, “
Feedback Controlled Nanocantilever Device
,”
Appl. Phys. Lett.
85
, pp.
681
683
.
15.
Dequesnes
M.
,
Rotkin
S. V.
, and
Aluru
N. R.
2002
, “
Calculation of Pull-in Voltage for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
,
13
, pp.
120
131
.
16.
Krcmar
M.
,
Saslow
W. M.
, and
Zangwill
A.
,
2003
, “
Electrostatic of Conducting Nanocylinder
,”
J. Appl. Phys.
,
93
, pp.
3495
3500
.
17.
Hayt
W.
, and
Buck
J.
,
2001
, Engineering Electromagnetics, 6th ed., McGraw–Hill, New York.
18.
Keblinski
P.
,
Nayak
S. K.
,
Zapol
P.
, and
Ajayan
P. M.
,
2002
, “
Charge Distribution and Stability of Charged Carbon Nanotube
,”
Phys. Rev. Lett.
,
89
, p.
255503
255503
.
19.
Bulashevich
K. A.
, and
Rotkin
S. V.
,
2002
, “
Nanotube Devices: A Microscopic Model
,”
JETP Lett.
,
175
, pp.
205
209
.
20.
Rotkin
S. V.
,
Shrivastava
V.
,
Bulashevich
K. A.
, and
Aluru
N. R.
,
2002
, “
Atomic Capacitance of a Nanotube Electrostatic Device
,”
Int. J. Nanosci.
,
1
, pp.
337
346
.
21.
Ke
C.-H.
, and
Espinosa
H. D.
,
2005
, “
Numerical Analysis of Nanotube Based NEMS Devices—Part I: Electrostatic Charge Distribution on Multiwalled Nanotubes
,”
ASME J. Appl. Mech.
,
72
, pp.
721
725
.
22.
Fertis
D.G.
,
1999
, Nonlinear Mechanics, 2nd ed. CRC, Boca Raton, FL.
23.
Sathyamoorthy
M.
,
1998
, Nonlinear Analysis of Structures, CRC, Boca Raton, FL.
24.
Ke
C-H.
,
Pugno
N.
,
Peng
B.
, and
Espinosa
H. D.
,
2005
, “
Experiments and Modelling of Carbon-Nanotube Based NEMS Devices
,”
J. Mech. Phys. Solids
,
53
, pp.
1314
1333
.
25.
Pugno
N.
,
Ke
C.-H.
, and
Espinosa
H. D.
,
2005
, "
Analysis of Doubly-Clamped Nanotube Devices Under Large Displacements
,"
ASME J. Appl. Mech.
,
72
, pp.
445
449
.
This content is only available via PDF.
You do not currently have access to this content.