Scaling laws provide a simple yet meaningful representation of the dominant factors of complex engineering systems, and thus are well suited to guide engineering design. Current methods to obtain useful models of complex engineering systems are typically ad hoc, tedious, and time consuming. Here, we present an algorithm that obtains a scaling law in the form of a power law from experimental data (including simulated experiments). The proposed algorithm integrates dimensional analysis into the backward elimination procedure of multivariate linear regressions. In addition to the scaling laws, the algorithm returns a set of dimensionless groups ranked by relevance. We apply the algorithm to three examples, in each obtaining the scaling law that describes the system with minimal user input.

1.
Kokshenev
,
V. B.
, 2003, “
Observation of Mammalian Similarity Through Allometric Scaling Laws
,”
Physica A
0378-4371,
322
(
1-4
), pp.
491
505
.
2.
Azad
,
R. K.
,
Bernaola-Galvan
,
P.
,
Ramaswamy
,
R.
, and
Rao
,
J. S.
, 2002, “
Segmentation of Genomic DNA Through Entropic Divergence: Power Laws and Scaling
,”
Phys. Rev. E
1063-651X,
65
(
5
), p.
051909
.
3.
Washio
,
T.
, and
Motoda
,
H.
, 1999, “
Extension of Dimensional Analysis for Scale-Types and Its Application to Discovery of Admissible Models of Complex Processes
,” in
2nd Int. Workshop on Similarity Method
,
University of Stuttgart
, Stuttgart, pp.
129
147
.
4.
Housen
,
K. R.
,
Schmidt
,
R. M.
, and
Holsapple
,
K. A.
, 1983, “
Crater Ejecta Scaling Laws—Fundamental Forms Based on Dimensional Analysis
,”
J. Geophys. Res.
0148-0227,
88
(
B3
), pp.
2485
2499
.
5.
Cho
,
J. Y. N.
,
Newell
,
R. E.
, and
Sachse
,
G. W.
, 1999, “
Anomalous Scaling of Mesoscale Tropospheric Humidity Fluctuations
,”
Geophys. Res. Lett.
0094-8276,
27
(
3
), pp.
377
380
.
6.
Carlson
,
J. M.
, and
Doyle
,
J.
, 2000, “
Power Laws, Highly Optimized Tolerance and Generalized Source Coding
,”
Phys. Rev. Lett.
0031-9007,
84
(
24
), pp.
5656
5659
.
7.
de Jong
,
F. J.
, and
Quade
,
W.
, 1967,
Dimensional analysis for economists
,
Contributions to Economic Analysis 50
,
North Holland
, Amsterdam.
8.
Szirtes
,
T.
, and
Rózsa
,
P.
, 1997,
Applied Dimensional Analysis and Modeling
,
McGraw Hill
, New York.
9.
Segel
,
L. A.
, 1972, “
Simplification and Scaling
,”
SIAM Rev.
0036-1445,
14
(
4
), pp.
547
571
.
10.
Mendez
,
P. F.
, and
Ordóñez
,
F.
, 2002, “
Determination of Scaling Laws From Statistical Data
,” in
Fifth Int. Workshop on Similarity Methods
,
University of Stuttgart
, Stuttgart, pp.
21
31
.
11.
Kasprzak
,
W.
,
Lysik
,
B.
, and
Rybachuk
,
A. M.
, 1999, “
Dimensional Analysis in the Identification of Mathematical Models
,” http://www.immt.pwr.wroc.pl/knigahttp://www.immt.pwr.wroc.pl/kniga
12.
Vignaux
,
G. A.
, and
Scott
,
J. L.
, 1999, “
Simplifying Regression Models Using Dimensional Analysis
,”
Aust. N. Z. J. Stat.
,
41
(
1
), pp.
31
41
.
13.
Vignaux
,
G. A.
, 2001, “
Some Examples of Dimensional Analysis in Operations Research and Statistics
,” in
4th Int. Workshop on Similarity Methods
,
University of Stuttgart
, Stuttgart, pp.
247
265
.
14.
Li
,
C. C.
, and
Lee
,
Y. C.
, 1990, “
A Statistical Procedure for Model-Building in Dimensional Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
7
), pp.
1566
1567
.
15.
Dovi
,
V. G.
,
Reverberi
,
A. P.
,
Maga
,
L.
, and
De Marchi
,
G.
, 1991, “
Improving the Statistical Accuracy of Dimensional Analysis Correlations for Precise Coefficient Estimation and Optimal Design of Experiments
,”
Int. Commun. Heat Mass Transfer
0735-1933,
18
(
4
), pp.
581
590
.
16.
Bradshaw
,
G.
,
Langley
,
P.
, and
Simon
,
H. A.
, 1980, “
Bacon 4: The Discovery of Intrinsic Properties
,” in
Proc. of the Third Nat. Conf. of the Canadian Society for Computational Studies of Intelligence
,
Victoria
, BC, pp.
19
25
.
17.
Kokar
,
M. M.
, 1986, “
Determining Arguments of Invariant Functional Descriptions
,”
Mach. Learn.
0885-6125,
1
(
4
), pp.
403
422
.
18.
Washio
,
T.
, and
Motoda
,
H.
, 1996, “
Discovery of Possible Law Formulae Based on Measurement Scale
,” in
Proc. of Fourth Int. Workshop on Rough Sets, Fuzzy Sets and Machine Discovery
,
Tokyo
, pp.
209
216
.
19.
Li
,
C. C.
, and
Lee
,
Y. C.
, 1989, “
Computational Aspects of Dimensional Analysis
,”
Int. Commun. Heat Mass Transfer
0735-1933,
16
(
2
), pp.
315
321
.
20.
Newcomb
,
S.
, 1881, “
Note on the Frequency of Use of the Different Digits in Natural Numbers
,”
Am. J. Math.
0002-9327,
4
, pp.
39
40
.
21.
Benford
,
F.
, 1938, “
The law of anomalous numbers
,”
Proc. Am. Philos. Soc.
0003-049X,
78
(
4
), pp.
551
572
.
22.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
, 1993,
Nonlinear Programming, Theory and Algorithms
, 2nd Edition,
Wiley
, New York.
23.
Freedman
,
D.
,
Pisani
,
R.
, and
Purves
,
R.
, 1998,
Statistics
, 3rd Edition,
W.W. Norton
, New York.
24.
Schlichting
,
H.
, 1987,
Boundary-Layer Theory
, 7th Edition,
McGraw-Hill Classic Textbook Reissue Series
,
McGraw-Hill
, New York.
25.
Mendez
,
P. F.
, and
Ordóñez
,
F.
, 2004, “
SLAW, a Package for Scaling LAWs From Statistical Data
,” http://illposed.usc.edu/∼pat/SLAWhttp://illposed.usc.edu/∼pat/SLAW
26.
Blackwell
,
B. E.
, 1996, A Framework for Determining the Mechanical Properties of Dissimilar Material Joints, Doctor of Philosophy, Massachusetts Institute of Technology, Cambridge, MA.
27.
Park
,
J.-W.
,
Mendez
,
P. F.
, and
Eagar
,
T. W.
, 2002, “
Strain Energy Distribution in Ceramic to Metal Joints
,”
Acta Mater.
1359-6454,
50
, pp.
883
899
.
28.
American Society for Testing and Materials
, 2002,
ASTM F 2183-02. Standard Test Method for Small Punch Testing of Ultra-High Molecular Weight Polyethylene Used in Surgical Implants
,
W. Conshohocken
, PA.
29.
Bergström
,
J.
, and
Kurtz
,
S.
, 2003, “
Extraction of Strength Properties of Bone Cement From Uniaxial Tension, Uniaxial Compression, and Small Punch Data
,” Technical Report MT00046.0MD/C0F2/0103/0001, Exponent, January 31.
You do not currently have access to this content.