The sharp divergence of two root-loci for a critical value of the parameters is called veering. Veering phenomena are interesting since they involve relevant energetic exchanges between the eigenmodes and strongly affect the undamped forced response of the system. A straightforward perturbation approach has already been used in the literature to analyze the dependence of the eigensprectrum on a system parameter and formulate a veering criterion. This perturbation approach and other ideas are generalized to the study of veering in discrete and continuous systems with gyroscopic operators of internal coupling and the results applied to a real electromechanical interaction.

1.
Leissa
,
A. W.
, 1974, “
On a Curve Veering Abberation
,”
J. Appl. Math. Phys. (ZAMP)
,
25
, pp.
99
111
.
2.
Doll
,
R. W.
, and
Mote
,
C. D.
, 1976, “
On the Dynamics Analysis of Curved and Twisted Cylinders Transporting Fluids
,”
J. Pressure Vessel Technol.
0094-9930,
98
, pp.
143
149
.
3.
Ramaswamy
,
R.
, and
Marcus
,
R. A.
, 1981, “
Perturbative Examination of Avoided Crossings
,”
J. Chem. Phys.
,
72
, pp.
1379
1384
.
4.
Nair
,
P. S.
, and
Durvasula
,
S.
, 1973, “
On Quasi Degeneracies in Plate Vibration Problems
,”
Int. J. Mech. Sci.
0020-7403,
15
, pp.
975
986
.
5.
Triantafyllou
,
M. S.
, 1984, “
The Dynamics of Taut Inclined Cables
,”
Q. J. Mech. Appl. Math.
0033-5614,
37
, pp.
421
440
.
6.
Russel
,
J. C.
, and
Lardner
T. J.
, 1998, “
Experimental Determination of Frequencies and Tension for Elastic Cables
,”
J. Eng. Mech.
0733-9399,
124
, pp.
1067
1072
.
7.
Behbahani-Nejad
,
M.
, and
Perkins
,
N. C.
, 1996, “
Freely Propagating Waves in Elastic Cables
,”
J. Sound Vib.
0022-460X,
196
, pp.
189
202
.
8.
Cheng
,
S. P.
, and
Perkins
,
N. C.
, 1992, “
Closed Form Vibration Analysis of Sagged Cable/mass Suspensions
,”
J. Appl. Mech.
0021-8936,
59
, pp.
923
928
.
9.
Pierre
,
C.
, 1988, “
Mode Localization and Eigenvalues Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
0022-460X,
126
(
3
), pp.
485
502
.
10.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
, 1991, “
Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory
,”
J. Sound Vib.
0022-460X,
150
(
3
), pp.
485
500
.
11.
Natsiavas
,
S.
, 1993, “
Mode Localization and Frequency Veering in a Non-conservative System With Dissimilar Components
,”
J. Sound Vib.
0022-460X,
165
, pp.
137
147
.
12.
Perkins
,
N. C.
, and
Mote
,
C. D.
, 1986, “
Comments on Curve Veering in Eigenvalues Problems
,”
J. Sound Vib.
0022-460X,
106
, pp.
451
463
.
13.
Pierre
,
C.
, and
Dowell
,
E. H.
, 1987, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
0022-460X,
114
, pp.
549
564
.
14.
Happawana
,
G. S.
,
Bajaj
,
A. K.
, and
Nwokah
,
O. D. I.
, 1993, “
A Singular Perturbation Analysis for Eigenvalue Veering and Modal Sensitivity in Perturbed Linear Periodic Systems
,”
J. Sound Vib.
0022-460X,
160
, pp.
225
242
.
15.
Arnold
,
V. I.
, 1989,
Mathematical Method of Classical Mechanics
, 2nd ed.,
Springer-Verlag
, New York.
16.
Meirovitch
,
L.
, 1974, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
0001-1452
12
(
10
), pp.
1337
1342
.
17.
den Hartog
,
J. P.
, 1934,
Mechanical Vibrations
, 4th ed.,
McGraw-Hill
, New York.
18.
Lacarbonara
,
W.
, and
Vestroni
,
F.
, 2002, “
Feasibility of a Vibration Absorber Based on Hysteresis
,”
Proceedings of the Third World Conference on Structural Control
,
Como, Italy
.
19.
Vidoli
,
S.
, and
dell’Isola
,
F.
, 2001, “
Vibration Control in Plates by Uniformly Distributed Actuators Interconnected via Electric Networks
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
435
456
.
20.
dell’Isola
,
F.
,
Vestroni
,
F.
, and
Vidoli
,
S.
, 2002, “
A Class of Electromechanical Systems: Linear and Nonlinear Mechanics
,”
J. Theoretical Appl. Mech.
,
40
(
1
), pp.
47
71
.
You do not currently have access to this content.