The sharp divergence of two root-loci for a critical value of the parameters is called veering. Veering phenomena are interesting since they involve relevant energetic exchanges between the eigenmodes and strongly affect the undamped forced response of the system. A straightforward perturbation approach has already been used in the literature to analyze the dependence of the eigensprectrum on a system parameter and formulate a veering criterion. This perturbation approach and other ideas are generalized to the study of veering in discrete and continuous systems with gyroscopic operators of internal coupling and the results applied to a real electromechanical interaction.
Issue Section:
Technical Papers
1.
Leissa
, A. W.
, 1974, “On a Curve Veering Abberation
,” J. Appl. Math. Phys. (ZAMP)
, 25
, pp. 99
–111
.2.
Doll
, R. W.
, and Mote
, C. D.
, 1976, “On the Dynamics Analysis of Curved and Twisted Cylinders Transporting Fluids
,” J. Pressure Vessel Technol.
0094-9930, 98
, pp. 143
–149
.3.
Ramaswamy
, R.
, and Marcus
, R. A.
, 1981, “Perturbative Examination of Avoided Crossings
,” J. Chem. Phys.
, 72
, pp. 1379
–1384
.4.
Nair
, P. S.
, and Durvasula
, S.
, 1973, “On Quasi Degeneracies in Plate Vibration Problems
,” Int. J. Mech. Sci.
0020-7403, 15
, pp. 975
–986
.5.
Triantafyllou
, M. S.
, 1984, “The Dynamics of Taut Inclined Cables
,” Q. J. Mech. Appl. Math.
0033-5614, 37
, pp. 421
–440
.6.
Russel
, J. C.
, and Lardner
T. J.
, 1998, “Experimental Determination of Frequencies and Tension for Elastic Cables
,” J. Eng. Mech.
0733-9399, 124
, pp. 1067
–1072
.7.
Behbahani-Nejad
, M.
, and Perkins
, N. C.
, 1996, “Freely Propagating Waves in Elastic Cables
,” J. Sound Vib.
0022-460X, 196
, pp. 189
–202
.8.
Cheng
, S. P.
, and Perkins
, N. C.
, 1992, “Closed Form Vibration Analysis of Sagged Cable/mass Suspensions
,” J. Appl. Mech.
0021-8936, 59
, pp. 923
–928
.9.
Pierre
, C.
, 1988, “Mode Localization and Eigenvalues Loci Veering Phenomena in Disordered Structures
,” J. Sound Vib.
0022-460X, 126
(3
), pp. 485
–502
.10.
Triantafyllou
, M. S.
, and Triantafyllou
, G. S.
, 1991, “Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory
,” J. Sound Vib.
0022-460X, 150
(3
), pp. 485
–500
.11.
Natsiavas
, S.
, 1993, “Mode Localization and Frequency Veering in a Non-conservative System With Dissimilar Components
,” J. Sound Vib.
0022-460X, 165
, pp. 137
–147
.12.
Perkins
, N. C.
, and Mote
, C. D.
, 1986, “Comments on Curve Veering in Eigenvalues Problems
,” J. Sound Vib.
0022-460X, 106
, pp. 451
–463
.13.
Pierre
, C.
, and Dowell
, E. H.
, 1987, “Localization of Vibrations by Structural Irregularity
,” J. Sound Vib.
0022-460X, 114
, pp. 549
–564
.14.
Happawana
, G. S.
, Bajaj
, A. K.
, and Nwokah
, O. D. I.
, 1993, “A Singular Perturbation Analysis for Eigenvalue Veering and Modal Sensitivity in Perturbed Linear Periodic Systems
,” J. Sound Vib.
0022-460X, 160
, pp. 225
–242
.15.
Arnold
, V. I.
, 1989, Mathematical Method of Classical Mechanics
, 2nd ed., Springer-Verlag
, New York.16.
Meirovitch
, L.
, 1974, “A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,” AIAA J.
0001-1452 12
(10
), pp. 1337
–1342
.17.
den Hartog
, J. P.
, 1934, Mechanical Vibrations
, 4th ed., McGraw-Hill
, New York.18.
Lacarbonara
, W.
, and Vestroni
, F.
, 2002, “Feasibility of a Vibration Absorber Based on Hysteresis
,” Proceedings of the Third World Conference on Structural Control
, Como, Italy
.19.
Vidoli
, S.
, and dell’Isola
, F.
, 2001, “Vibration Control in Plates by Uniformly Distributed Actuators Interconnected via Electric Networks
,” Eur. J. Mech. A/Solids
0997-7538, 20
, pp. 435
–456
.20.
dell’Isola
, F.
, Vestroni
, F.
, and Vidoli
, S.
, 2002, “A Class of Electromechanical Systems: Linear and Nonlinear Mechanics
,” J. Theoretical Appl. Mech.
, 40
(1
), pp. 47
–71
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.