A constitutive theory is presented for a transversely isotropic, viscoplastic (Bingham) fluid. The theory accounts for threshold (yield) and viscous flow characteristics through inclusion of a potential function serving the dual role of a threshold function and a viscous flow potential. The arguments and form of the potential function derive from the theory of tensorial invariants. The model reduces to a transversely isotropic model of perfect plasticity in the limit of vanishing viscosity. In the limit of isotropy, it reduces to the Hohenemser-Prager generalization of Bingham’s model. A characterization procedure is prescribed based on correlation with experiments conducted under simple states of stress. Application is made to polymer melts filled with talc particles.

1.
Chapman
,
F. M.
, and
Lee
,
T. S.
,
1970
, “
Effect of Talc Filler on the Melt Rheology of Polypropylene
,”
SPE J.
,
26
, pp.
37
40
.
2.
Vinogradov
,
G. V.
,
Malkin
,
A. Y.
,
Plotnikova
,
E. P.
,
Sabsai
,
O. Y.
, and
Nikolayeva
,
N. E.
,
1972
, “
Viscoelastic Properties of Filled Polymers
,”
Int. J. Polym. Mat.
,
2
, pp.
1
27
.
3.
Suetsugu
,
Y.
, and
White
,
J. L.
,
1983
, “
The Influence of Particle Size and Surface Coating of Calcium Carbonate on the Rheological Properties of Its Suspensions in Molten Polystyrene
,”
J. Appl. Polym. Sci.
,
28
, pp.
1481
1501
.
4.
Osanaiye
,
G.
,
Leonov
,
A. I.
, and
White
,
J. L.
,
1993
, “
Investigations of the Rheological Behavior of Rubber Carbon-Black Compounds Over a Wide-Range of Stresses Including Very-Low Stresses
,”
J. Non-Newtonian Fluid Mech.
,
49
, pp.
87
101
.
5.
Toki
,
S.
, and
White
,
J. L.
,
1982
, “
Rheological and Solid Boundary Condition Characterization of Unvulcanized Elastomers and Their Compounds
,”
J. Appl. Polym. Sci.
,
27
, pp.
3171
3184
.
6.
Montes
,
S.
, and
White
,
J. L.
,
1982
, “
A Comparative Rheological Investigation of Natural and Systhetic Cis-1,4 Polyisoprenes and Their Carbon Black Compounds
,”
Rubber Chem. Technol.
,
55
, pp.
1354
1369
.
7.
Kim
,
K. J.
, and
White
,
J. L.
,
1999
, “
Rheological Investigations of Suspensions of Talc, Calcium Carbonate and Their Mixtures in a Polystyrene Melt
,”
Polym. Eng. Sci.
,
39
, pp.
2189
2198
.
8.
Bingham, E. C., 1922, Fluidity and Plasticity, McGraw-Hill, New York.
9.
Hohenemser
,
K.
, and
Prager
,
W.
,
1932
, “
U¨ber die ansa¨tze der mechanik isotroper kontinua
,”
Z. Angew. Math. Mech.
,
12
, pp.
216
226
.
10.
Oldroyd
,
J. G.
,
1947
, “
A Rational Formulation of the Equations of Plastic Flow for a Bingham Solid
,”
Proc. Cambridge Philos. Soc.
,
43
, pp.
100
105
.
11.
Prager, W., 1961, Introduction to Mechanics of Continua, Ginn and Co., Boston.
12.
White
,
J. L.
,
1979
, “
A Plastic-Viscoelastic Constitutive Equation to Represent the Rheological Behavior of Concentrated Suspensions of Small Particles in Polymer Melts
,”
J. Non-Newtonian Fluid Mech.
,
5
, pp.
177
190
.
13.
White
,
J. L.
, and
Lobe
,
V. M.
,
1982
, “
Comparison of the Prediction of Viscoelastic and Plastic-Viscoelastic Fluid Model to the Rheological Behavior of Polystyrene and Polystyrene-Carbon Black Compounds
,”
Rheol. Acta
,
21
, pp.
167
175
.
14.
Ericksen
,
J. L.
,
1961
, “
Poiseuille Flow of Certain Anisotropic Fluids
,”
Arch. Ration. Mech. Anal.
,
8
, pp.
1
8
.
15.
White
,
J. L.
, and
Suh
,
C. H.
,
1997
, “
A Theory of Transversely Isotropic Plastic Viscoelastic Fluids to Represent the Flow of Talc and Similar Disc-Like Particle Suspensions in Thermoplastics
,”
J. Non-Newtonian Fluid Mech.
,
69
, pp.
15
27
.
16.
Hill
,
R.
,
1949
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
,
A193
, pp.
281
428
.
17.
Hill
,
R.
,
1949
, “
The Theory of Plane Plastic Strain for Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
,
A193
, pp.
428
437
.
18.
Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK.
19.
White
,
J. L.
,
Kim
,
K. J.
, and
Robinson
,
D. N.
,
1999
, “
Alternate Models for a Transversely Isotropic Plastic Viscoelastic Fluid
,”
J. Non-Newtonian Fluid Mech.
,
83
, pp.
19
32
.
20.
Spencer, A. J. M., 1971, Continuum Physics, A. C. Eringen, ed., Academic Press, San Diego, CA.
21.
Spencer, A. J. M., 1972, Deformations of Fiber-Reinforced Materials, Clarendon Press, Oxford, England.
22.
Spencer, A. J. M., 1984, Continuum Theory of Fiber-Reinforced Composites, Springer-Verlag, New York.
23.
Spencer
,
A. J. M.
,
1992
, “
Plasticity Theory for Fiber-Reinforced Composites
,”
J. Eng. Math.
,
26
, pp.
107
118
.
24.
Lance
,
R. H.
, and
Robinson
,
D. N.
,
1971
, “
A Maximum Shear Stress Theory of Plastic Failure for Fiber-Reinforced Materials
,”
J. Mech. Phys. Solids
,
19
, pp.
49
60
.
25.
Robinson
,
D. N.
, and
Duffy
,
S. F.
,
1990
, “
Continuum Deformation Theory for High Temperature Metallic Composites
,”
J. Eng. Mech.
,
116
(
4
), pp.
832
844
.
26.
Poitou
,
A.
,
Chinesta
,
F.
, and
Bernier
,
G.
,
2001
, “
Orienting Fibers by Extrusion in Reactive Powder Concrete
,”
J. Eng. Mech.
,
127
(
6
), pp.
593
598
.
27.
Advani, S. G., 1994, Flow and Rheology in Polymer Composites Manufacturing, Elsevier Science, Amsterdam.
28.
Robinson
,
D. N.
, and
Pastor
,
M. S.
,
1992
, “
Limit Pressure of a Circumferentially Reinforced SiC/Ti Ring
,”
Composites Eng.
,
2
(
4
), pp.
229
238
.
29.
von Mises
,
R.
,
1928
, “
Mechanik der plastischen forma¨nderung von kristallen
,”
Z. Angew. Math. Mech.
,
8
, pp.
161
185
.
30.
Perzyna
,
P.
,
1966
, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
,
9
, pp.
243
377
.
31.
Drucker
,
D. C.
,
1959
, “
A Definition of Stable Inelastic Material
,”
ASME J. Appl. Mech.
,
26
, pp.
101
106
.
32.
Drucker, D. C., 1962, “Stress-Strain-Time Relations and Irreversible Thermodynamics,” Proc. of the International Symposium on Second Order Effects in Elasticity, Plasticity and Fluid Mechanics, Haifa, Pergamon, London, pp. 331–351.
33.
Ziegler
,
H.
,
1958
, “
An Attempt to Generalize Onsager’s Principle
,”
Z. Angew. Math. Phys.
,
9b
, pp.
748
763
.
34.
Betten, J., 1981, “On the Representation of the Plastic Potential of Anisotropic Solids,” Plastic Behavior of Anisotropic Solids, Proc. CNRS Internat. Colloquium, J. P. Boehler, ed., Villard-de-Lans, Editions du Centre National de la Recherche Scientifique, pp. 213–228.
35.
Robinson, D. N., Bininda, W. K., and Ruggles, M. B., 2001, “Creep of Polymer Matrix Composites (PMC), Norton/Bailey Creep Law for Transverse Isotropy,” submitted for publication.
You do not currently have access to this content.