The present study is intended to develop a new method for analyzing nonlinear stochastic dynamic response of the Preisach hysteretic systems based on covariance and switching probability analysis of a nonlocal memory hysteretic constitutive model. A nonlinear algebraic covariance equation is formulated for the single-degree-of-freedom Preisach hysteretic system subjected to stationary Gaussian white noise excitation, from which the stationary mean square response of the system is obtained. The correlation coefficients of hysteretic restoring force with response in the covariance equation are evaluated by using the second moments and switching probabilities that are derived from the disjoint event probability and the mathematical machinery of an exit problem. In recognizing the symmetry of the classical Preisach weighting function, an approximation of equal “up” and “down” switching probabilities is introduced, which greatly simplifies the evaluation of the correlation coefficients. An example of the Preisach hysteretic system with Gaussian distribution weighting function is presented and the analytical results are compared with the digital simulation findings to verify the accuracy of the derived formulas. Computation results show that there exists a sharp drop in the mean square responses with the increase of a hysteresis parameter, and the mean square responses are affected only in a certain range of the Preisach weighting function.

1.
Preisach
,
F.
,
1935
, “
U¨ber die Magnetische Nachwirkung
,”
Z. Phys.
,
94
, pp.
277
302
(in German).
2.
Krasnoselskii, M. A., and Pokrovskii, A. V., 1989, Systems With Hysteresis, Springer, Berlin.
3.
Mayergoyz, I. D., 1991, Mathematical Models of Hysteresis, Springer-Verlag, New York.
4.
Visintin, A., 1994, Differential Models of Hysteresis, Springer-Verlag, Berlin.
5.
Hughes, D., and Wen, J. T., 1995, “Preisach Modeling and Compensation for Smart Material Hysteresis,” Active Materials and Smart Structures, Vol. 2427, G. L. Anderson and D. C. Lagoudas, eds., SPIE, Bellingham, WA, pp. 50–64.
6.
Ni
,
Y. Q.
,
Ko
,
J. M.
, and
Wong
,
C. W.
,
1999
, “
Nonparametric Identification of Nonlinear Hysteretic Systems
,”
J. Eng. Mech.
,
125
, pp.
206
215
.
7.
Freeman, A. R., and Joshi, S. P., 1996, “Numerical Modeling of PZT Nonlinear Electromechanical Behavior,” Smart Structures and Materials 1996: Mathematics and Control in Smart Structures, Vol. 2715, V. V. Varadan and J. Chandra, eds., SPIE, Bellingham, WA, pp. 602–613.
8.
Bertotii
,
G.
, and
Basso
,
V.
,
1993
, “
Considerations on the Physical Interpretation of the Preisach Model of Ferromagnetic Hysteresis
,”
J. Appl. Phys.
,
73
, pp.
5827
5829
.
9.
Sreeram, P. N., and Naganathan, N. G., 1994, “Hysteresis Prediction for Piezoceramic Actuator Systems Using Preisach Models,” Smart Structures and Materials 1994: Smart Materials, Vol. 2189, V. V. Varadan, ed., SPIE, Bellingham, WA, pp. 14–25.
10.
Ge
,
P.
, and
Jouaneh
,
M.
,
1995
, “
Modeling Hysteresis in Piezoceramic Actuators
,”
Precis. Eng.
,
17
, pp.
211
221
.
11.
Hughes
,
D.
, and
Wen
,
J. T.
,
1997
, “
Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis
,”
Smart Mater. Struct.
,
6
, pp.
287
300
.
12.
Lagoudas
,
D. C.
, and
Bhattacharyya
,
A.
,
1997
, “
On the Correspondence Between Micromechanical Models for Isothermal Pseudoelastic Response of Shape Memory Alloys and the Preisach Model for Hysteresis
,”
Math. Mech. Solids
,
2
, pp.
405
440
.
13.
Adly
,
A. A.
,
Mayergoyz
,
I. D.
, and
Bergqvist
,
A.
,
1991
, “
Preisach Modeling of Magnetostrictive Hysteresis
,”
J. Appl. Phys.
,
69
, pp.
5777
5779
.
14.
Schafer
,
J.
, and
Janocha
,
H.
,
1995
, “
Compensation of Hysteresis in Solid-State Actuators
,”
Sens. Actuators A
,
49
, pp.
97
102
.
15.
Lubarda
,
V. A.
,
Sumarac
,
D.
, and
Krajcinovic
,
D.
,
1993
, “
Preisach Model and Hysteretic Behaviour of Ductile Materials
,”
Eur. J. Mech. A/Solids
,
12
, pp.
445
470
.
16.
Sumarac
,
D.
, and
Stosic
,
S.
,
1996
, “
The Preisach Model for the Cyclic Bending of Elasto-Plastic Beams
,”
Eur. J. Mech. A/Solids
,
15
, pp.
155
172
.
17.
Wang, J. Y., Ni, Y. Q., and Ko, J. M., 1999, “Transient Dynamic Response of Preisach Hysteretic Systems,” A New Advance in Seismic Isolation, Energy Dissipation and Control of Structures, F. Zhou and B. F. Spencer, Jr., eds., Seismological Press, Beijing, China, pp. 378–385.
18.
Ni, Y. Q., Wang, J. Y., and Ko, J. M., 1999, “Advanced Method for Modelling Hysteretic Behaviour of Semi-Rigid Joints,” Advances in Steel Structures, Vol. 1, S. L. Chan and J. G. Teng, eds., Elsevier Science Ltd., Oxford, UK, pp. 331–338.
19.
Lo, H. R., Hammond, J. K., and Sainsbury, M. G., 1988, “Nonlinear System Identification and Modelling with Application to an Isolator with Hysteresis,” Proceedings of the 6th International Modal Analysis Conference, Vol. 2, Society of Experimental Mechanics, Bethel, CT, pp. 1453–1459.
20.
Mayergoyz
,
I. D.
, and
Korman
,
C. E.
,
1991
, “
Preisach Model With Stochastic Input as a Model for Viscosity
,”
J. Appl. Phys.
,
69
, pp.
2128
2134
.
21.
Mayergoyz
,
I. D.
, and
Korman
,
C. E.
,
1994
, “
The Preisach Model With Stochastic Input as a Model for Aftereffect
,”
J. Appl. Phys.
,
75
, pp.
5478
5480
.
22.
Korman
,
C. E.
, and
Mayergoyz
,
I. D.
,
1997
, “
Review of Preisach Type Models Driven by Stochastic Inputs as a Model for After-Effect
,”
Physica B
,
233
, pp.
381
389
.
23.
Verdi
,
C.
, and
Visintin
,
A.
,
1989
, “
Numerical Approximation of the Preisach Model for Hysteresis
,”
Math. Modell. Numer. Anal.
,
23
, pp.
335
356
.
24.
Yu, Y., Xiao, Z., Lin, E.-B., and Naganathan, N., 1999, “Wavelet Implementation of Preisach Model of Hysteresis,” Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, Vol. 3667, V. V. Varadan, ed., SPIE, Bellingham, WA, pp. 776–784.
25.
Wen
,
Y. K.
,
1980
, “
Equivalent Linearization for Hysteretic Systems Under Random Excitation
,”
ASME J. Appl. Mech.
,
47
, pp.
150
154
.
26.
Korman
,
C. E.
, and
Mayergoyz
,
I. D.
,
1995
, “
Switching as an Exit Problem
,”
IEEE Trans. Magn.
,
31
, pp.
3545
3547
.
27.
Ni, Y. Q., Ying, Z. G., and Ko, J. M., 2000, “Nonlinear Random Vibration of Preisach Hysteretic Systems,” Proceedings of the International Conference on Advanced Problems in Vibration Theory and Applications, J. H. Zhang and X. N. Zhang, eds., Science Press, Beijing, China, pp. 568–574.
28.
Galinaitis, W. S., and Rogers, R. C., 1997, “Compensation for Hysteresis Using Bivariate Preisach Models,” Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Vol. 3039, V. V. Varadan and J. Chandra, eds., SPIE, Bellingham, WA, pp. 538–647.
29.
Torre
,
E. D.
, and
Vajda
,
F.
,
1997
, “
Effect of Apparent Reversibility on Parameter Estimation
,”
IEEE Trans. Magn.
,
33
, pp.
1085
1092
.
You do not currently have access to this content.