A smart functionally graded plate consists of a plate made of a functionally gradient material and actuators made of an active material. The active material, a layer or set of patches, is bonded on the metal-rich surface of the functionally graded plate. When the ceramic-rich surface of the substrate is subjected to thermomechanical loadings, displacements, and stresses may be controlled, and vibration amplitudes may be suppressed by the actuators with supplied electric power. In the attempt towards a basic understanding of the new type of smart structural system, this study considers a benchmark problem, namely, the bending of a functionally graded rectangular plate with an attached piezoelectric actuator. The transfer matrix and asymptotic expansion techniques are employed to obtain a three-dimensional asymptotic solution. In numerical computations, the locally effective material properties of the functionally gradient material are estimated by the Mori-Tanaka scheme. The three-dimensional distributions of displacements and stresses for different volume fractions of the ceramic and metallic constituents could serve as benchmark results to assess approximate theories and numerical methods.

1.
Aboudi
,
J.
,
Pindera
,
M. J.
, and
Arnold
,
S. M.
,
1997
, “
Microstructural Optimization of Functionally Graded Composites Subjected to a Thermal Gradient via the Coupled Higher-Order Theory
,”
Composites, Part B
,
28B
, pp.
93
108
.
2.
Nadeau
,
J. C.
, and
Ferrari
,
M.
,
1999
, “
Microstructural Optimization of a Functionally Graded Transversely Isotropic Layer
,”
Mech. Mater.
,
31
, pp.
637
651
.
3.
Praveen
,
G. N.
, and
Reddy
,
J. N.
,
1998
, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
,
35
, pp.
4457
4476
.
4.
Praveen
,
G. N.
,
Chin
,
C. D.
, and
Reddy
,
J. N.
,
1999
, “
Thermoelastic Analysis of Functionally Graded Ceramic-Metal Cylinder
,”
J. Eng. Mech.
,
125
, pp.
1259
1267
.
5.
Reddy
,
J. N.
, and
Chin
,
C. D.
,
1998
, “
Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
,
21
, pp.
593
626
.
6.
Reddy
,
J. N.
,
Wang
,
C. M.
, and
Kitipornchai
,
S.
,
1999
, “
Axisymmetric Bending of Functionally Graded Circular and Annular Plates
,”
Eur. J. Mech. A/Solids
,
18
, pp.
185
199
.
7.
Reddy
,
J. N.
,
2000
, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
,
47
, pp.
663
684
.
8.
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
,
1999
, “
Vibration of Functionally Graded Cylindrical Shells
,”
Int. J. Mech. Sci.
,
41
, pp.
309
324
.
9.
Gong
,
S. W.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
,
1999
, “
The Elastic Response of Functionally Graded Cylindrical Shells to Low Velocity Impact
,”
Int. J. Impact Eng.
,
22
, pp.
397
417
.
10.
Cheng
,
Z. Q.
, and
Kitipornchai
,
S.
,
1999
, “
Membrane Analogy of Buckling and Vibration of Inhomogeneous Plates
,”
J. Eng. Mech.
,
125
, pp.
1293
1297
.
11.
Cheng
,
Z. Q.
, and
Kitipornchai
,
S.
,
2000
, “
Exact Bending Solution of Inhomogeneous Plates from Homogeneous Thin-Plate Deflection
,”
AIAA J.
,
38
, pp.
1289
1291
.
12.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Exact Correspondence between Eigenvalues of Membranes and Functionally Graded Simply Supported Polygonal Plates
,”
J. Sound Vib.
,
229
, pp.
879
895
.
13.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Deflection Relationships between the Homogeneous Kirchhoff Plate Theory and Different Functionally Graded Plate Theories
,”
Arch. Mech.
,
52
, pp.
143
158
.
14.
Crawley
,
E. F.
, and
de Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
, pp.
1373
1385
.
15.
Zhou
,
Y. S.
, and
Tiersten
,
H. F.
,
1994
, “
Elastic Analysis of Laminated Composite Plates in Cylindrical Bending due to Piezoelectric Actuators
,”
Smart Mater. Struct.
,
3
, pp.
255
265
.
16.
Mitchell
,
J. A.
, and
Reddy
,
J. N.
,
1995
, “
A Refined Hybrid Plate Theory for Composite Laminates With Piezoelectric Laminae
,”
Int. J. Solids Struct.
,
32
, pp.
2345
2367
.
17.
Robbins
,
D. H.
, and
Reddy
,
J. N.
,
1996
, “
An Efficient Computational Model for the Stress Analysis of Smart Plate Structures
,”
Smart Mater. Struct.
,
5
, pp.
353
360
.
18.
Reddy
,
J. N.
,
1999
, “
On Laminated Composite Plates with Integrated Sensors and Actuators
,”
Eng. Struct.
,
21
, pp.
568
593
.
19.
Pagano
,
N. J.
,
1969
, “
Exact Solutions for Composite Laminates in Cylindrical Bending
,”
J. Compos. Mater.
,
3
, pp.
398
411
.
20.
Pagano
,
N. J.
,
1970
, “
Exact Solutions for Rectangular Bi-directional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
, pp.
20
34
.
21.
Heyliger
,
P.
,
1994
, “
Static Behavior of Laminated Elastic/Piezoelectric Plates
,”
AIAA J.
,
32
, pp.
2481
2484
.
22.
Bisegna
,
P.
, and
Maceri
,
F.
,
1996
, “
An Exact Three-Dimensional Solution for Simply Supported Rectangular Piezoelectric Plates
,”
ASME J. Appl. Mech.
,
63
, pp.
628
638
.
23.
Kapuria
,
S.
,
Dube
,
G. P.
, and
Dumir
,
P. C.
,
1997
, “
Exact Piezothermoelastic Solution for Simply Supported Laminated Flat Panel in Cylindrical Bending
,”
Z. Angew. Math. Mech.
,
77
, pp.
281
293
.
24.
Sosa
,
H. A.
,
1992
, “
On the Modelling of Piezoelectric Laminated Structures
,”
Mech. Res. Commun.
,
19
, pp.
541
546
.
25.
Xu
,
K.
,
Noor
,
A. K.
, and
Tang
,
Y. Y.
,
1995
, “
Three-Dimensional Solutions for Coupled Thermoelectroelastic Response of Multilayered Plates
,”
Comput. Methods Appl. Mech. Eng.
,
126
, pp.
355
371
.
26.
Xu
,
K.
,
Noor
,
A. K.
, and
Tang
,
Y. Y.
,
1997
, “
Three-Dimensional Solutions for Free Vibrations of Initially-Stressed Thermoelectroelastic Multilayered Plates
,”
Comput. Methods Appl. Mech. Eng.
,
141
, pp.
125
139
.
27.
Lee
,
J. S.
, and
Jiang
,
L. Z.
,
1996
, “
Exact Electroelastic Analysis of Piezoelectric Laminae via State Space Approach
,”
Int. J. Solids Struct.
,
33
, pp.
977
990
.
28.
Maugin
,
G. A.
, and
Attou
,
D.
,
1990
, “
An Asymptotic Theory of Thin Piezoelectric Plates
,”
Q. J. Mech. Appl. Math.
,
43
, pp.
347
362
.
29.
Bisegna
,
P.
, and
Maceri
,
F.
,
1996
, “
A Consistent Theory of Thin Piezoelectric Plates
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
372
389
.
30.
Rogers
,
T. G.
,
Watson
,
P.
, and
Spencer
,
A. J. M.
,
1992
, “
An Exact Three-Dimensional Solution for Normal Loading of Inhomogeneous and Laminated Anisotropic Elastic Plates of Moderate Thickness
,”
Proc. R. Soc. London, Ser. A
,
437
, pp.
199
213
.
31.
Rogers
,
T. G.
,
Watson
,
P.
, and
Spencer
,
A. J. M.
,
1995
, “
Exact Three-Dimensional Elasticity Solutions for Bending of Moderately Thick Inhomogeneous and Laminated Strips under Normal Pressure
,”
Int. J. Solids Struct.
,
32
, pp.
1659
1673
.
32.
Wang
,
Y. M.
, and
Tarn
,
J. Q.
,
1994
, “
A Three-Dimensional Analysis of Anisotropic Inhomogeneous and Laminated Plates
,”
Int. J. Solids Struct.
,
31
, pp.
497
515
.
33.
Tarn
,
J. Q.
, and
Wang
,
Y. M.
,
1995
, “
Asymptotic Thermoelastic Analysis of Anisotropic Inhomogeneous and Laminated Plates
,”
J. Therm. Stresses
,
18
, pp.
35
58
.
34.
Cheng
,
Z. Q.
,
Lim
,
C. W.
, and
Kitipornchai
,
S.
,
1999
, “
Three-Dimensional Exact Solution for Inhomogeneous and Laminated Piezoelectric Plates
,”
Int. J. Eng. Sci.
,
37
, pp.
1425
1439
.
35.
Cheng
,
Z. Q.
,
Lim
,
C. W.
, and
Kitipornchai
,
S.
,
2000
, “
Three-Dimensional Asymptotic Approach to Inhomogeneous and Laminated Piezoelectric Plates
,”
Int. J. Solids Struct.
37
, pp.
3153
3175
.
36.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Three-Dimensional Thermoelastic Deformations of a Functionally Graded Elliptic Plate
,”
Composites, Part B
,
31
, pp.
97
106
.
37.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Three-Dimensional Asymptotic Scheme for Piezothermoelastic Laminates
,”
J. Therm. Stresses
,
23
, pp.
95
110
.
38.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Three-Dimensional Asymptotic Analysis of Multiple-Electroded Piezoelectric Laminates
,”
AIAA J.
,
38
, pp.
317
324
.
39.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Generalized Plane Solution for Monoclinic Piezoelectric Laminates
,”
AIAA J.
,
38
, pp.
335
341
.
40.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
41.
Mindlin
,
R. D.
,
1974
, “
Equations of High Frequency Vibrations of Thermopiezoelectric Crystal Plates
,”
Int. J. Solids Struct.
,
10
, pp.
625
632
.
42.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, FL.
43.
Aboudi, J., 1991, Mechanics of Composite Materials—A Unified Micromechanical Approach, Elsevier Amsterdam.
44.
Pindera
,
M. J.
,
Aboudi
,
J.
, and
Arnold
,
S. M.
,
1995
, “
Limitations of the Uncoupled, RVE-Based Micromechanical Approaches in the Analysis of Functionally Graded Composites
,”
Mech. Mater.
,
20
, pp.
77
94
.
45.
Zuiker
,
J. R.
,
1995
, “
Functionally Graded Materials: Choice of Micromechanics Model and Limitations in Property Variation
,”
Composites Eng.
,
5
, pp.
807
819
.
46.
Reiter
,
T.
,
Dvorak
,
G. J.
, and
Tvergaard
,
V.
,
1997
, “
Micromechanical Models for Graded Composite Materials
,”
J. Mech. Phys. Solids
,
45
, pp.
1281
1302
.
47.
Reiter
,
T.
, and
Dvorak
,
G. J.
,
1998
, “
Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,”
J. Mech. Phys. Solids
,
46
, pp.
1655
1673
.
48.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
49.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials
,”
Mech. Mater.
,
6
, pp.
147
157
.
50.
Hatta
,
H.
, and
Taya
,
M.
,
1985
, “
Effective Thermal Conductivity of a Misoriented Short Fiber Composite
,”
J. Appl. Phys.
,
58
, pp.
2478
2486
.
51.
Rosen
,
B. W.
, and
Hashin
,
Z.
,
1970
, “
Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials
,”
Int. J. Eng. Sci.
,
8
, pp.
157
173
.
52.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
222
.
53.
Murphy, G., 1957, Properties of Engineering Materials, 3rd Ed., International Textbook Co., Scranton, PA.
54.
Van Vlack, L. H., 1985, Elements of Materials Science and Engineering, 5th Ed., Addison-Wesley, Reading, MA.
55.
Gol’denveizer
,
A. L.
,
1969
, “
Boundary Layer and Its Interaction with the Interior State of Stress of an Elastic Thin Shell
,”
J. Appl. Math. Mech.
,
33
, pp.
971
1001
.
56.
Dauge
,
M.
, and
Gruais
,
I.
,
1998
, “
Edge Layers in Thin Elastic Plates
,”
Comput. Methods Appl. Mech. Eng.
,
157
, pp.
335
347
.
You do not currently have access to this content.