We study energy pumping in an impulsively excited, two-degrees-of-freedom damped system with essential (nonlinearizable) nonlinearities by means of two analytical techniques. First, we transform the equations of motion using the action-angle variables of the underlying Hamiltonian system and bring them into the form where two-frequency averaging can be applied. We then show that energy pumping is due to resonance capture in the 1:1 resonance manifold of the system, and perform a perturbation analysis in an Oε neighborhood of this manifold in order to study the attracting region responsible for the resonance capture. The second method is based on the assumption of 1:1 internal resonance in the fast dynamics of the system, and utilizes complexification and averaging to develop analytical approximations to the nonlinear transient responses of the system in the energy pumping regime. The results compare favorably to numerical simulations. The practical implications of the energy pumping phenomenon are discussed.

1.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M’Closkey
,
R.
,
2001
, “
Energy ‘Pumping’ in Coupled Mechanical Oscillators I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
, Vol.
68
, pp.
34
41
.
2.
Arnold, V. I., ed., 1988, Dynamical Systems III (Encyclopaedia of Mathematical Sciences), Vol. 3, Springer-Verlag, Berlin.
3.
Lochak, P., and Meunier, C., 1988, Multiphase Averaging for Classical Systems (Series on Applied Mathematical Sciences), Vol. 72, Springer-Verlag, Berlin.
4.
Morozov, A. D., 1998, Quasi-conservative Systems, Cycles, Resonances and Chaos (Series on Nonlinear Science, Series A), Vol. 30, World Scientific, Singapore.
5.
Neishtadt
,
A. I.
,
1975
, “
Passage Through a Resonance in the Two-Frequency Problem
,”
Dokl. Akad. Nauk
,
221
, pp.
301
304
.
6.
Neishtadt
,
A. I.
,
1976
, “
Averaging in Multifrequency Systems II
,”
Dokl. Akad. Nauk SSSR
,
226
, pp.
1295
1298
.
7.
Neishtadt
,
A. I.
,
1975
, “
Passage Through a Separatrix in a Resonance Problem With a Slowly-Varying Parameter
,”
Prikl. Mat. Meck. (PMM)
,
39
, No.
4
, pp.
621
632
.
8.
Haberman
,
P.
,
1983
, “
Energy Bounds for the Slow Capture by a Center in Sustained Resonance
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
43
, No.
2
, pp.
244
256
.
9.
Morozov
,
A. D.
, and
Shil’nikov
,
L. P.
,
1984
, “
On Nonconservative Periodic Systems Close to Two-Dimensional Hamiltonian
,”
Prikl. Mat. Meck. (PMM)
,
47
, No.
3
, pp.
327
334
.
10.
Lewin
,
L.
, and
Kevorkian
,
J.
,
1978
, “
On the Problem of Sustained Resonance
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
35
, No.
4
, pp.
738
754
.
11.
Kath
,
W. L.
,
1983
, “
Necessary Conditions for Sustained Reentry Roll Resonance
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
43
, No.
2
, pp.
314
324
.
12.
Kath
,
W. L.
,
1983
, “
Conditions for Sustained Resonance II
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
43
, No.
3
, pp.
579
583
.
13.
Quinn
,
D.
, and
Rand
,
R.
,
1995
, “
The Dynamics of Resonance Capture
,”
Nonlinear Dyn.
,
8
, pp.
1
20
.
14.
Rand
,
R.
, and
Quinn
,
D.
,
1995
, “
Resonant Capture in a System of Two Coupled Homoclinic Oscillators
,”
J. Vib. Control
,
1
, pp.
41
56
.
15.
Bosley
,
D. L.
, and
Kevorkian
,
J.
,
1995
, “
On the Asymptotic Solution of Non-Hamiltonian Systems Exhibiting Sustained Resonance
,”
Stud. Appl. Math.
,
94
, pp.
83
130
.
16.
Bosley
,
D. L.
,
1996
, “
An Improved Matching Procedure for Transient Resonance Layers in Weakly Nonlinear Oscillatory Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
56
, No.
2
, pp.
420
445
.
17.
Percival, I., and Richards, D., 1982, Introduction to Dynamics, Cambridge University Press, Cambridge, UK.
18.
Vakakis
,
A. F.
,
1994
, “
Exponentially Small Splittings of Manifolds in a Rapidly Forced Duffing System
,”
J. Sound Vib.
,
170
, No.
1
, pp.
119
129
.
You do not currently have access to this content.