This paper presents an exact static stress analysis of a multilayered elastic spherical shell (hollow sphere) completely based on three-dimensional elasticity for spherical isotropy. Two independent state equations are derived after introducing three displacement functions and two stress functions. In particular, a variable substitution technique is used to derive the state equations with constant coefficients. Matrix theory is then employed to obtain the relationships between the state variables at the upper and lower surfaces of each lamina. By virtue of the continuity conditions between two adjacent layers, a second-order linear algebraic equation and a fourth-order one about the boundary variables at the inner and outer surfaces of a multilayered spherical shell are obtained. Numerical examples are presented to show the effectiveness of the present method.

1.
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge.
2.
Lekhnitskii, S. G., 1981, Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow.
3.
Hu
,
H. C.
,
1954
, “
On the General Theory of Elasticity for a Spherically Isotropic Medium
,”
Acta Sci. Sin.
,
3
, pp.
247
260
.
4.
Chen
,
W. T.
,
1966
, “
On Some Problems in Spherically Isotropic Elastic Materials
,”
ASME J. Appl. Mech.
,
33
, pp.
539
546
.
5.
Puro
,
A. E.
,
1980
, “
Variable Separation in Elasticity—Theory Equations for Spherically Transversely Isotropic Inhomogeneous Bodies
,”
Soviet Applied Mechanics
,
16
, pp.
117
120
.
6.
Shul’ga
,
N. A.
,
Grigorenko
,
A. Y.
, and
Efimova
,
T. L.
,
1988
, “
Free Non-axisymmetric Oscillations of a Thick-Walled, Nonhomogeneous, Transversely Isotropic, Hollow Sphere
,”
Soviet Applied Mechanics
,
24
, pp.
439
444
.
7.
Chau
,
K. T.
,
1998
, “
Toroidal Vibrations of Anisotropic Spheres with Spherical Isotropy
,”
ASME J. Appl. Mech.
,
65
, pp.
59
65
.
8.
Ding, H. J., Liang, J., Zou, D. Q., and Chen, W. Q., 1997, Transversely Isotropic Elasticity, Zhejiang University Press, Hangzhou (in Chinese).
9.
Maiti
,
M.
,
1975
, “
Stresses in Anisotropic Nonhomogeneous Sphere
,”
ASME J. Eng. Mech.
,
101
, pp.
101
108
.
10.
Raju
,
P. P.
,
1975
, “
On Shallow Shells of Transversely Isotropic Materials
,”
ASME J. Pressure Vessel Technol.
,
97
, pp.
185
191
.
11.
Montagner
,
J. P.
, and
Anderson
,
D. L.
,
1989
, “
Constrained Reference Mantle Model
,”
Phys. Earth Planet. Inter.
,
54
, pp.
205
227
.
12.
Ding
,
Z. Y.
,
Zou
,
D. Q.
, and
Ding
,
H. J.
,
1996
, “
A Study of Effects of the Earth’s Radial Anisotropy on the Tidal Stress Field
,”
Tectonophysics
,
258
, pp.
103
114
.
13.
Sosa
,
H. A.
, and
Castro
,
M. A.
,
1993
, “
Electroelastic Analysis of Piezoelectric Laminated Structures
,”
ASME Appl. Mech. Rev.
,
46
, pp.
21
28
.
14.
Ding
,
H. J.
,
Xu
,
R. Q.
,
Chen
,
W. Q.
, and
Chi
,
Y. W.
,
1998
, “
Free Axisymmetric Vibration of Transversely Isotropic Laminated Circular Plates
,”
Acta Mechanica Solida Sinica
,
11
, pp.
209
215
.
15.
Ding
,
H. J.
,
Ren
,
Y. J.
,
Zou
,
D. Q.
, and
Chen
,
W. Q.
,
1994
, “
Displacement Method of Elasticity Problems in Spherically Isotropic Media
,”
Acta Mech. Sin.
,
26
, pp.
186
197
(in Chinese).
16.
Bellman, R., 1970, Introduction to Matrix Analysis, McGraw-Hill, New York.
17.
Hayek
,
S.
,
1966
, “
Vibration of a Spherical Shell in an Acoustic Medium
,”
J. Acoust. Soc. Am.
,
40
, pp.
342
348
.
You do not currently have access to this content.