Vibration attenuation is an important factor while designing rotating machinery since frequency lying in the range corresponding to natural modes of structures can result in resonance and ultimately failure. Damping dissipates energy in the system, which reduces the vibration level. The mitigation of vibrations can be achieved by designing the base frame with periodic air holes. The periodicity in air holes result in vibration attenuation by providing a stop band. A finite element-based approach is developed to predict the modal and frequency response. The analysis is carried out with different shapes of periodic cavities in order to study the effectiveness of periodic stop bands in attenuating vibrations. The amount of mass removed due to the periodic cavities is kept constant. It is seen that better attenuation is obtained in case of periodic cavities compared to a uniform base frame. Among the different geometries tested, rectangular cavities showed better results than circular and square cavities. As a result, it is seen that waves propagate along periodic cells only within specific frequency bands called the “Pass bands”, while these waves are completely blocked within other frequency bands called the “Stopbands”. The air cavities filter structural vibrations in certain frequency bands resulting in effective attenuation.

This content is only available via PDF.
You do not currently have access to this content.