0
Review Article

Technological Advances to Maximize Solar Collector Energy Output: A Review

[+] Author and Article Information
Swapnil S. Salvi, Vishal Bhalla

School of Mechanical,
Materials and Energy Engineering,
Indian Institute of Technology Ropar,
Rupnagar 140001, Punjab, India

Robert A. Taylor

School of Mechanical and
Manufacturing Engineering;
School of Photovoltaics and
Renewable Energy Engineering,
The University of New South Wales,
Sydney 2052, Australia

Vikrant Khullar

Mechanical Engineering Department,
Thapar University,
Patiala 147004, Punjab, India

Todd P. Otanicar

Department of Mechanical Engineering,
The University of Tulsa,
Tulsa 74104, OK

Patrick E. Phelan

School for Engineering of Matter,
Transport & Energy,
Arizona State University,
Tempe, AZ 85287

Himanshu Tyagi

School of Mechanical,
Materials and Energy Engineering,
Indian Institute of Technology Ropar,
Rupnagar 140001, Punjab, India
e-mail: himanshu.tyagi@iitrpr.ac.in

1Present address: Centre for Energy and Environmental Engineering, National Institute of Technology, Hamirpur, 177005, Himachal Pradesh, India

2Corresponding author.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received May 4, 2018; final manuscript received August 19, 2018; published online October 1, 2018. Assoc. Editor: Ankur Jain.

J. Electron. Packag 140(4), 040802 (Oct 01, 2018) (21 pages) Paper No: EP-18-1036; doi: 10.1115/1.4041219 History: Received May 04, 2018; Revised August 19, 2018

Since it is highly correlated with quality of life, the demand for energy continues to increase as the global population grows and modernizes. Although there has been significant impetus to move away from reliance on fossil fuels for decades (e.g., localized pollution and climate change), solar energy has only recently taken on a non-negligible role in the global production of energy. The photovoltaics (PV) industry has many of the same electronics packaging challenges as the semiconductor industry, because in both cases, high temperatures lead to lowering of the system performance. Also, there are several technologies, which can harvest solar energy solely as heat. Advances in these technologies (e.g., solar selective coatings, design optimizations, and improvement in materials) have also kept the solar thermal market growing in recent years (albeit not nearly as rapidly as PV). This paper presents a review on how heat is managed in solar thermal and PV systems, with a focus on the recent developments for technologies, which can harvest heat to meet global energy demands. It also briefs about possible ways to resolve the challenges or difficulties existing in solar collectors like solar selectivity, thermal stability, etc. As a key enabling technology for reducing radiation heat losses in these devices, the focus of this paper is to discuss the ongoing advances in solar selective coatings and working fluids, which could potentially be used in tandem to filter out or recover the heat that is wasted from PVs. Among the reviewed solar selective coatings, recent advances in selective coating categories like dielectric-metal-dielectric (DMD), multilayered, and cermet-based coatings are considered. In addition, the effects of characteristic changes in glazing, absorber geometry, and solar tracking systems on the performance of solar collectors are also reviewed. A discussion of how these fundamental technological advances could be incorporated with PVs is included as well.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kalogirou, S. A. , 2004, “ Solar Thermal Collectors and Applications,” Prog. Energy Combust. Sci., 30(3), pp. 231–295. [CrossRef]
McGrath, D. , 2017, “ Wafer Shipments Forecast to Rise Through 2019,” EE Times, San Francisco, CA, accessed May 4, 2018 https://www.eetimes.com/document.asp?doc_id=1332470.
Derbyshire, K. , 2011, “ How Do PV and IC Silicon Markets Compare?,” Semicond. Eng. (epub). http://semiengineering.com/how-do-pv-and-ic-silicon-markets-compare/
Agrawal, B. , and Tiwari, G. N. , 2010, “ Optimizing the Energy and Exergy of Building Integrated Photovoltaic Thermal (BIPVT) Systems Under Cold Climatic Conditions,” Appl. Energy, 87(2), pp. 417–426. [CrossRef]
Fleischer, K. , Arca, E. , and Shvets, I. V. , 2012, “ Improving Solar Cell Efficiency With Optically Optimised TCO Layers,” Sol. Energy Mater. Sol. Cells, 101, pp. 262–269. [CrossRef]
Hjerrild, N. E. , and Taylor, R. A. , 2017, “ Boosting Solar Energy Conversion With Nanofluids,” Phys. Today, 70(12), pp. 40–45. [CrossRef]
Crisostomo, F. , Taylor, R. A. , Zhang, T. , Perez-Wurfl, I. , Rosengarten, G. , Everett, V. , and Hawkes, E. R. , 2014, “ Experimental Testing of SiNx/SiO2thin Film Filters for a Concentrating Solar Hybrid PV/T Collector,” Renewable Energy, 72, pp. 79–87. [CrossRef]
Abdin, Z. , Alim, M. A. , Saidur, R. , Islam, M. R. , Rashmi, W. , Mekhilef, S. , and Wadi, A. , 2013, “ Solar Energy Harvesting With the Application of Nanotechnology,” Renewable Sustainable Energy Rev., 26, pp. 837–852. [CrossRef]
Benick, J. , Richter, A. , Müller, R. , Hauser, H. , Feldmann, F. , Krenckel, P. , Riepe, S. , Schindler, F. , Schubert, M. C. , Hermle, M. , Bett, A. W. , and Glunz, S. W. , 2017, “ High-Efficiency n-Type HP Mc Silicon Solar Cells,” IEEE J. Photovolt., 7(5), pp. 1171–1175. [CrossRef]
Fraunhofer Group, 2018, “ Fraunhofer Institute for Solar Energy Systems—ISE,” Fraunhofer ISE, Baden-Württemberg, Germany, accessed Aug. 28, 2018, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
Kwan, T. H. , and Wu, X. , 2016, “ Power and Mass Optimization of the Hybrid Solar Panel and Thermoelectric Generators,” Appl. Energy, 165, pp. 297–307. [CrossRef]
Tianze, L. , Hengwei, L. , Chuan, J. , Luan, H. , and Xia, Z. , 2011, “ Application and Design of Solar Photovoltaic System,” J. Phys.: Conf. Ser., 276(1), p. 012175. http://iopscience.iop.org/article/10.1088/1742-6596/276/1/012175/pdf
Parida, B. , Iniyan, S. , and Goic, R. , 2011, “ A Review of Solar Photovoltaic Technologies,” Renewable Sustainable Energy Rev., 15(3), pp. 1625–1636. [CrossRef]
Zhang, L. , and Chen, Z. , 2017, “ Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT) System,” Energies, 10(4), p. 507.
Bogue, R. , 2012, “ Solar-Powered Sensors: A Review of Products and Applications,” Sens. Rev., 32(2), pp. 95–100. [CrossRef]
Ben Belghith, O. , and Sbita, L. , 2014, “ Remote GSM Module Monitoring and Photovoltaic System Control,” First International Conference on Green Energy (ICGE 2014), Sfax, Tunisia, Mar. 25–27, pp. 188–192.
Meah, K. , Fletcher, S. , and Ula, S. , 2008, “ Solar Photovoltaic Water Pumping for Remote Locations,” Renewable Sustainable Energy Rev., 12(2), pp. 472–487. [CrossRef]
Mokeddem, A. , Midoun, A. , Kadri, D. , Hiadsi, S. , and Raja, I. A. , 2011, “ Performance of a Directly-Coupled PV Water Pumping System,” Energy Convers. Manage., 52(10), pp. 3089–3095. [CrossRef]
Hussein, A. A. , and Fardoun, A. A. , 2015, “ Design Considerations and Performance Evaluation of Outdoor PV Battery Chargers,” Renewable Energy, 82, pp. 85–91. [CrossRef]
Boico, F. , Lehman, B. , and Shujaee, K. , 2007, “ Solar Battery Charger for NiMH Batteries,” IEEE Trans. Power Electron., 5, pp. 1600–1609. [CrossRef]
Kuperman, A. , Sitbon, M. , Gadelovits, S. , Averbukh, M. , and Suntio, T. , 2015, “ Single-Source Multibattery Solar Charger: Case Study and Implementation Issues,” Energies, 8(12), pp. 1916–1928.
Koutroulis, E. , and Kalaitzakis, K. , 2003, “ Novel Battery Charging Regulation System for Photovoltaic Applications,” IEE Proc. Electr Power Appl., 151(2), pp. 191–197. [CrossRef]
Nasiri, A. , Zabalawi, S. A. , and Mandic, G. , 2009, “ Indoor Power Harvesting Using Photovoltaic Cells for Low Power Applications,” IEEE Trans. Ind. Electron., 56(11), pp. 4502–4509. [CrossRef]
Sukhatme, S. , and Nayak, J. , 1996, Solar Energy, Tata McGraw-Hill Education, New York.
Bany Mousa, O. M. , and Taylor, R. A. , 2018, “ A Broad Comparison of Solar Photovoltaic and Thermal Technologies for Industrial Heating Applications,” ASME J. Sol. Energy Eng., 141(1), p. 011002. [CrossRef]
Nižetić, S. , Čoko, D. , Yadav, A. , and Grubišić-Čabo, F. , 2016, “ Water Spray Cooling Technique Applied on a Photovoltaic Panel: The Performance Response,” Energy Convers. Manage., 108, pp. 287–296. [CrossRef]
Radziemska, E. , and Klugmann, E. , 2002, “ Thermally Affected Parameters of the Current-Voltage Characteristics of Silicon Photocell,” Energy Convers. Manage., 43(14), pp. 1889–1900. [CrossRef]
Green, M. A. , Hishikawa, Y. , Warta, W. , Dunlop, E. D. , Levi, D. H. , Hohl-Ebinger, J. , and Ho-Baillie, A. W. H. , 2017, “ Solar Cell Efficiency Tables (Version 50),” Prog. Photovolt.: Res. Appl., (7), pp. 668–676.
Cappelletti, A. , Catelani, M. , Ciani, L. , Kazimierczuk, M. K. , and Reatti, A. , 2016, “ Practical Issues and Characterization of a Photovoltaic/Thermal Linear Focus 20x Solar Concentrator,” IEEE Trans. Instrum. Meas., 65(11), pp. 2464–2475. [CrossRef]
Hjerrild, N. E. , Scott, J. A. , Amal, R. , and Taylor, R. A. , 2018, “ Exploring the Effects of Heat and UV Exposure on Glycerol-Based Ag-SiO2nanofluids for PV/T Applications,” Renewable Energy, 120, pp. 266–274. [CrossRef]
Otanicar, T. P. , Theisen, S. , Norman, T. , Tyagi, H. , and Taylor, R. A. , 2015, “ Envisioning Advanced Solar Electricity Generation: Parametric Studies of CPV/T Systems With Spectral Filtering and High Temperature PV,” Appl. Energy, 140, pp. 224–233. [CrossRef]
Li, Q. , Shirazi, A. , Zheng, C. , Rosengarten, G. , Scott, J. A. , and Taylor, R. A. , 2016, “ Energy Concentration Limits in Solar Thermal Heating Applications,” Energy, 96, pp. 253–267.
Thebault, M. , Reizes, J. , Giroux–Julien, S. , Timchenko, V. , and Ménézo, C. , 2018, “ Impact of External Temperature Distribution on the Convective Mass Flow Rate in a Vertical Channel—A Theoretical and Experimental Study,” Int. J. Heat Mass Transfer, 121, pp. 1264–1272. [CrossRef]
Cuce, E. , Bali, T. , and Sekucoglu, S. A. , 2011, “ Effects of Passive Cooling on Performance of Silicon Photovoltaic Cells,” Int. J. Low-Carbon Technol., 6(4), pp. 299–308. [CrossRef]
Cengel, Y. , and Ghajar, A. , 2011, Heat and Mass Transfer, McGraw-Hill Education, New York.
Tonui, J. K. , and Tripanagnostopoulos, Y. , 2007, “ Air-Cooled PV/T Solar Collectors With Low Cost Performance Improvements,” Sol. Energy, 81(4), pp. 498–511. [CrossRef]
Shahsavar, A. , Salmanzadeh, M. , Ameri, M. , and Talebizadeh, P. , 2011, “ Energy Saving in Buildings by Using the Exhaust and Ventilation Air for Cooling of Photovoltaic Panels,” Energy Build., 43(9), pp. 2219–2226. [CrossRef]
Daghigh, R. , Ruslan, M. H. , and Sopian, K. , 2011, “ Advances in Liquid Based Photovoltaic/Thermal (PV/T) Collectors,” Renewable Sustainable Energy Rev., 15(8), pp. 4156–4170. [CrossRef]
Han, X. , Guo, Y. , Wang, Q. , and Phelan, P. , 2018, “ Optical Characterization and Durability of Immersion Cooling Liquids for High Concentration III-V Photovoltaic Systems,” Sol. Energy Mater. Sol. Cells, 174, pp. 124–131. [CrossRef]
Zhang, B. , Wang, Y. , Huang, Q. , Feng, J. , Cui, Y. , and Zhang, Y. , 2015, “ Study on the Performance of Cooling Composite Materials for Liquid-Immersed Concentrating Photovoltaic Systems,” Sol. Energy, 119, pp. 543–552. [CrossRef]
Sun, Y. , Wang, Y. , Zhu, L. , Yin, B. , Xiang, H. , and Huang, Q. , 2014, “ Direct Liquid-Immersion Cooling of Concentrator Silicon Solar Cells in a Linear Concentrating Photovoltaic Receiver,” Energy, 65, pp. 264–271. [CrossRef]
Sundarraj, P. , Taylor, R. A. , Banerjee, D. , Maity, D. , and Roy, S. S. , 2017, “ Experimental and Theoretical Analysis of a Hybrid Solar Thermoelectric Generator With Forced Convection Cooling,” J. Phys. D. Appl. Phys, 50(1), p. 15501. [CrossRef]
Sung, M. K. , and Mudawar, I. , 2009, “ Single-Phase and Two-Phase Hybrid Cooling Schemes for High-Heat-Flux Thermal Management of Defense Electronics,” ASME J. Electron. Packag., 131(2), pp. 21010–21013. [CrossRef]
Gakkhar, N. , Soni, M. S. , and Jakhar, S. , 2016, “ Analysis of Water Cooling of CPV Cells Mounted on Absorber Tube of a Parabolic Trough Collector,” Energy Procedia, 90, pp. 78–88. [CrossRef]
Zhu, L. , Raman, A. , Wang, K. X. , Anoma, M. A. , and Fan, S. , 2014, “ Radiative Cooling of Solar Cells,” Optica, 1(1), p. 32. [CrossRef]
Mittelman, G. , Alshare, A. , and Davidson, J. H. , 2009, “ A Model and Heat Transfer Correlation for Rooftop Integrated Photovoltaics With a Passive Air Cooling Channel,” Sol. Energy, 83(8), pp. 1150–1160. [CrossRef]
Kecebas, M. A. , Menguc, M. P. , Kosar, A. , and Sendur, K. , 2017, “ Passive Radiative Cooling Design With Broadband Optical Thin-Film Filters,” J. Quant. Spectrosc. Radiat. Transfer, 198, pp. 1339–1351. [CrossRef]
Zhu, L. , Raman, A. P. , and Fan, S. , 2015, “ Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody,” Proc. Natl. Acad. Sci., 112(40), pp. 12282–12287. [CrossRef]
Safi, T. S. , and Munday, J. N. , 2015, “ Improving Photovoltaic Performance Through Radiative Cooling in Both Terrestrial and Extraterrestrial Environments,” Opt. Express, 23(19), p. A1120. [CrossRef] [PubMed]
Gentle, A. R. , and Smith, G. B. , 2016, “ Is Enhanced Radiative Cooling of Solar Cell Modules Worth Pursuing?,” Sol. Energy Mater. Sol. Cells, 150, pp. 39–42. [CrossRef]
Sun, X. , Silverman, T. J. , Zhou, Z. , Khan, M. R. , Bermel, P. , and Alam, M. A. , 2017, “ Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling,” IEEE J. Photovolt., 7(2), pp. 566–574. [CrossRef]
Li, W. , Shi, Y. , Chen, K. , Zhu, L. , and Fan, S. , 2017, “ A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics, 4(4), pp. 774–782. [CrossRef]
Huang, Z. , and Ruan, X. , 2017, “ Nanoparticle Embedded Double-Layer Coating for Daytime Radiative Cooling,” Int. J. Heat Mass Transfer, 104, pp. 890–896. [CrossRef]
Soo Too, Y. C. , Diago López, M. , Cassard, H. , Duffy, G. , Benito, R. , and Navio, R. , 2017, “ Thermal Performance and Operation of a Solar Tubular Receiver With CO2 as the Heat Transfer Fluid,” ASME J. Sol. Energy Eng., 139(4), p. 041004. [CrossRef]
Phelan, P. , Otanicar, T. , Taylor, R. , and Tyagi, H. , 2013, “ Trends and Opportunities in Direct-Absorption Solar Thermal Collectors,” ASME J. Therm. Sci. Eng. Appl., 5(2), p. 021003. [CrossRef]
Duffie, J. A. , and Beckman, W. A. , 2013, Solar Engineering of Thermal Processes Solar Engineering, Wiley, Hoboken, NJ.
Bhalla, V. , and Tyagi, H. , 2018, “ Parameters Influencing the Performance of Nanoparticles-Laden Fluid-Based Solar Thermal Collectors: A Review on Optical Properties,” Renewable Sustainable Energy Rev., 84, pp. 12–42. [CrossRef]
Peterseim, J. H. , and Veeraragavan, A. , 2015, “ Solar Towers With Supercritical Steam Parameters—Is the Efficiency Gain Worth the Effort?,” Energy Procedia, 69(0), pp. 1123–1132. [CrossRef]
Kumaresan, G. , Sudhakar, P. , Santosh, R. , and Velraj, R. , 2017, “ Experimental and Numerical Studies of Thermal Performance Enhancement in the Receiver Part of Solar Parabolic Trough Collectors,” Renewable Sustainable Energy Rev., 77, pp. 1363–1374. [CrossRef]
Sandeep, H. M. , and Arunachala, U. C. , 2017, “ Solar Parabolic Trough Collectors: A Review on Heat Transfer Augmentation Techniques,” Renewable Sustainable Energy Rev., 69, pp. 1218–1231. [CrossRef]
Khelifa, A. , Touafek, K. , Boutina, L. , and Tahar, B. M. , 2018, “ Theoretical and Experimental Analysis of the Solar Collectors Performances,” IET Renew. Power Gener., 12(7), pp. 867–873. [CrossRef]
Al Tarabsheh, A. , Ghazal, A. , Asad, M. , Morci, Y. , Etier, I. , El Haj, A. , and Fath, H. , 2016, “ Performance of Photovoltaic Cells in Photovoltaic Thermal (PVT) Modules,” IET Renew. Power Gener., 10(7), pp. 1017–1023. [CrossRef]
Ben Cheikh El Hocine, H. , Touafek, K. , and Kerrour, F. , 2016, “ Theoretical and Experimental Studies of a New Configuration of Photovoltaic–Thermal Collector,” ASME J. Sol. Energy Eng., 139(2), p. 021012. [CrossRef]
Crisostomo, F. , Taylor, R. A. , Surjadi, D. , Mojiri, A. , Rosengarten, G. , and Hawkes, E. R. , 2015, “ Spectral Splitting Strategy and Optical Model for the Development of a Concentrating Hybrid PV/T Collector,” Appl. Energy, 141, pp. 238–246. [CrossRef]
Hu, P. , Zhang, Q. , Liu, Y. , Sheng, C. , Cheng, X. , and Chen, Z. , 2013, “ Optical Analysis of a Hybrid Solar Concentrating Photovoltaic/Thermal (CPV/T) System With Beam Splitting Technique,” Sci. China Technol. Sci., 56(6), pp. 1387–1394. [CrossRef]
Suman, S. , Kaleem, M. , and Pathak, M. , 2015, “ Performance Enhancement of Solar Collectors—A Review,” Renewable Sustainable Energy Rev., 49, pp. 192–210. [CrossRef]
Kennedy, C. , 2002, “ Review of Mid- to High-Temperature Solar Selective Absorber Materials,” National Renewable Energy Lab., Golden, CO, Technical Report No. NREL/TP-520-31267.
Kumar, R. , and Chand, P. , 2017, “ Performance Enhancement of Solar Air Heater Using Herringbone Corrugated Fins,” Energy, 127, pp. 271–279. [CrossRef]
Khullar, V. , Singh, H. , and Tyagi, H. , 2018, “ Direct Absorption Solar Thermal Technologies,” Applications of Solar Energy, Springer, H. Tyagi , A. Agarwal , P. Chakraborty , and S. Powar , eds., Springer, Berlin, Germany, pp. 81–97.
Kennedy, C. E. , and Price, H. , 2005, “ Progress in Development of High-Temperature Solar-Selective Coating,” ASME Paper No. ISEC2005-76039.
Fang, X. , Zhao, C. Y. , and Bao, H. , 2016, “ Study on a Novel Selective Solar Absorber With Surface Ultrathin Metal Film,” ASME Paper No. MNHMT2016-6584.
Fan, J. C. , and Bachner, F. J. , 1976, “ Transparent Heat Mirrors for Solar-Energy Applications,” Appl. Opt, 15(4), pp. 1012–1017. [CrossRef] [PubMed]
Khullar, V. , Tyagi, H. , Otanicar, T. , Hewakuruppu, Y. , and Taylor, R. , 2018, “ Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy,” ASME J. Heat Transfer., 140(6), p. 062702.
Giovannetti, F. , Föste, S. , Ehrmann, N. , and Rockendorf, G. , 2014, “ High Transmittance, Low Emissivity Glass Covers for Flat Plate Collectors: Applications and Performance,” Sol. Energy, 104, pp. 52–59. [CrossRef]
Gomez-garcia, F. , González-aguilar, J. , Olalde, G. , and Romero, M. , 2016, “ Thermal and Hydrodynamic Behavior of Ceramic Volumetric Absorbers for Central Receiver Solar Power Plants: A Review,” Renewable Sustainable Energy Rev., 57, pp. 648–658. [CrossRef]
Bellos, E. , Tzivanidis, C. , Antonopoulos, K. A. , and Gkinis, G. , 2016, “ Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube,” Renewable Energy, 94, pp. 213–222. [CrossRef]
Bisht, V. S. , Patil, A. K. , and Gupta, A. , 2018, “ Review and Performance Evaluation of Roughened Solar Air Heaters,” Renewable Sustainable Energy Rev., 81, pp. 954–977. [CrossRef]
Dan, A. , Barshilia, H. C. , Chattopadhyay, K. , and Basu, B. , 2017, “ Solar Energy Absorption Mediated by Surface Plasma Polaritons in Spectrally Selective Dielectric-Metal-Dielectric Coatings: A Critical Review,” Renewable Sustainable Energy Rev., 79, pp. 1050–1077. [CrossRef]
Sani, E. , Mercatelli, L. , Francini, F. , Sans, J. L. , and Sciti, D. , 2011, “ Ultra-Refractory Ceramics for High-Temperature Solar Absorbers,” Scr. Mater., 65(9), pp. 775–778. [CrossRef]
Nuru, Z. Y. , Motaung, D. E. , Kaviyarasu, K. , and Maaza, M. , 2016, “ Optimization and Preparation of Pt-Al2O3double Cermet as Selective Solar Absorber Coatings,” J. Alloys Compd., 664, pp. 161–168. [CrossRef]
Cao, F. , Mcenaney, K. , Chen, G. , and Ren, Z. , 2014, “ Environmental Science a Review of Cermet-Based Spectrally Selective Solar Absorbers,” Energy Environ. Sci., 7(5), pp. 1615–1627. [CrossRef]
Atkinson, C. , Sansom, C. L. , Almond, H. J. , and Shaw, C. P. , 2015, “ Coatings for Concentrating Solar Systems—A Review,” Renewable Sustainable Energy Rev., 45, pp. 113–122. [CrossRef]
Jyothi, J. , Chaliyawala, H. , Srinivas, G. , Nagaraja, H. S. , and Barshilia, H. C. , 2015, “ Design and Fabrication of Spectrally Selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO Tandem Absorber for High-Temperature Solar Thermal Power Applications,” Sol. Energy Mater. Sol. Cells, 140, pp. 209–216. [CrossRef]
Joly, M. , Bouvard, O. , Gascou, T. , Antonetti, Y. , Python, M. , González Lazo, M. A. , Loesch, P. , Hessler-Wyser, A. , and Schüler, A. , 2015, “ Optical and Structural Analysis of Sol-Gel Derived Cu-Co-Mn-Si Oxides for Black Selective Solar Nanocomposite Multilayered Coatings,” Sol. Energy Mater. Sol. Cells, 143, pp. 573–580. [CrossRef]
Jain, R. , and Pitchumani, R. , 2017, “ Fabrication and Characterization of Multiscale, Fractal Textured Solar Selective Coatings,” Sol. Energy Mater. Sol. Cells, 172, pp. 213–219. [CrossRef]
Forbes, L. , 2012, “ Texturing, Reflectivity, Diffuse Scattering and Light Trapping in Silicon Solar Cells,” Sol. Energy, 86(1), pp. 319–325. [CrossRef]
Karoro, A. , Nuru, Z. Y. , Kotsedi, L. , Bouziane, K. , Mothudi, B. M. , and Maaza, M. , 2015, “ Laser Nanostructured Co Nanocylinders-Al2O3cermets for Enhanced & Flexible Solar Selective Absorbers Applications,” Appl. Surf. Sci., 347, pp. 679–684. [CrossRef]
Gorji, T. B. , and Ranjbar, A. A. , 2017, “ A Review on Optical Properties and Application of Nanofluids in Direct Absorption Solar Collectors (DASCs),” Renewable Sustainable Energy Rev., 72, pp. 10–32. [CrossRef]
Khullar, V. , Bhalla, V. , and Tyagi, H. , 2017, “ Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems,” ASME J. Therm. Sci. Eng. Appl., 10(1), p. 011009. [CrossRef]
Razykov, T. M. , Ferekides, C. S. , Morel, D. , Stefanakos, E. , Ullal, H. S. , and Upadhyaya, H. M. , 2011, “ Solar Photovoltaic Electricity: Current Status and Future Prospects,” Sol. Energy, 85(8), pp. 1580–1608. [CrossRef]
Taylor, R. A. , Hewakuruppu, Y. , DeJarnette, D. , and Otanicar, T. P. , 2016, “ Comparison of Selective Transmitters for Solar Thermal Applications,” Appl. Opt., 55(14), pp. 3829–3839. [CrossRef] [PubMed]
Szyszka, B. , Dewald, W. , Gurram, S. K. , Pflug, A. , Schulz, C. , Siemers, M. , Sittinger, V. , and Ulrich, S. , 2012, “ Recent Developments in the Field of Transparent Conductive Oxide Films for Spectral Selective Coatings, Electronics and Photovoltaics,” Curr. Appl. Phys., 12(Suppl. 4), pp. 2–11. [CrossRef]
Granqvist, C. G. , 2007, “ Transparent Conductors as Solar Energy Materials: A Panoramic Review,” Sol. Energy Mater. Sol. Cells, 91(17), pp. 1529–1598. [CrossRef]
Selvakumar, N. , and Barshilia, H. C. , 2012, “ Review of Physical Vapor Deposited (PVD) Spectrally Selective Coatings for Mid- and High-Temperature Solar Thermal Applications,” Sol. Energy Mater. Sol. Cells, 98, pp. 1–23. [CrossRef]
Selvakumar, N. , Barshilia, H. C. , Rajam, K. S. , and Biswas, A. , 2010, “ Structure, Optical Properties and Thermal Stability of Pulsed Sputter Deposited High Temperature HfOx/Mo/HfO2 Solar Selective Absorbers,” Sol. Energy Mater. Sol. Cells, 94(8), pp. 1412–1420. [CrossRef]
Nuru, Z. Y. , Msimanga, M. , Muller, T. F. G. , Arendse, C. J. , Mtshali, C. , and Maaza, M. , 2015, “ Microstructural, Optical Properties and Thermal Stability of MgO/Zr/MgO Multilayered Selective Solar Absorber Coatings,” Sol. Energy, 111, pp. 357–363. [CrossRef]
Khelifa, A. B. , Khamlich, S. , Nuru, Z. Y. , Kotsedi, L. , Mebrahtu, A. , Balgouthi, M. , Guizani, A. A. , Dimassi, W. , and Maaza, M. , 2018, “ Growth and Characterization of Spectrally Selective Cr2O3/Cr/Cr2O3multilayered Solar Absorber by e-Beam Evaporation,” J. Alloys Compd., 734, pp. 204–209. [CrossRef]
Shah, A. A. , Ungaro, C. , and Gupta, M. C. , 2015, “ High Temperature Spectral Selective Coatings for Solar Thermal Systems by Laser Sintering,” Sol. Energy Mater. Sol. Cells, 134, pp. 209–214. [CrossRef]
Sani, E. , Mercatelli, L. , Sansoni, P. , Silvestroni, L. , and Sciti, D. , 2012, “ Spectrally Selective Ultra-High Temperature Ceramic Absorbers for High-Temperature Solar Plants,” J. Renewable Sustainable Energy Rev., 4(3), p. 33104. [CrossRef]
Ding, D. , Cai, W. , Long, M. , Wu, H. , and Wu, Y. , 2010, “ Optical, Structural and Thermal Characteristics of Cu–CuAl2O4 Hybrids Deposited in Anodic Aluminum Oxide as Selective Solar Absorber,” Sol. Energy Mater. Sol. Cells, 94(10), pp. 1578–1581. [CrossRef]
Agnihotri, O. P. , and Gupta, B. K. , 1981, Solar Selective Surfaces, 1st ed., Wiley-Interscience, New York, p. 232.
Seraphin, B. O. , 1976, “ Chemical Vapor Deposition of Thin Semiconductor Films for Solar Energy Conversion,” Thin Solid Films, 39, pp. 87–94. [CrossRef]
Wang, K. K. , Wu, Z. Z. , Peng, C. J. , Wang, K. P. , Cheng, B. , Song, C. L. , Han, G. R. , and Liu, Y. , 2015, “ A Facile Process to Prepare Crosslinked Nano-Graphites Uniformly Dispersed in Titanium Oxide Films as Solar Selective Absorbers,” Sol. Energy Mater. Sol. Cells, 143, pp. 198–204. [CrossRef]
Moon, J. , Lu, D. , VanSaders, B. , Kim, T. K. , Kong, S. D. , Jin, S. , Chen, R. , and Liu, Z. , 2014, “ High Performance Multi-Scaled Nanostructured Spectrally Selective Coating for Concentrating Solar Power,” Nano Energy, 8, pp. 238–246. [CrossRef]
Barshilia, H. C. , 2014, “ Solar Selective Coating Having High Thermal Stability and a Process for the Preparation Thereof,” Council of Scientific and Industrial Research (CSIR) , New Delhi, India, U.S. Patent No. US9803891B2. https://patents.google.com/patent/US9803891B2/en
Granqvist, C. G. , 1987, “ Spectrally Selective Surfaces for Heating and Cooling Applications,” Physics and Technology of Solar Energy, Springer, Dordrecht, The Netherlands, pp. 191–276.
Nuru, Z. Y. , Perez, D. , Kaviyarasu, K. , Vantomme, A. , and Maaza, M. , 2015, “ Annealing Effect on the Optical Properties and Interdiffusion of MgO/Zr/MgO Multilayered Selective Solar Absorber Coatings,” Sol. Energy, 120, pp. 123–130. [CrossRef]
Nuru, Z. Y. , Arendse, C. J. , Khamlich, S. , Kotsedi, L. , and Maaza, M. , 2014, “ A Tantalum Diffusion Barrier Layer to Improve the Thermal Stability of AlxOy/Pt/AlxOy Multilayer Solar Absorber,” Sol. Energy, 107, pp. 89–96. [CrossRef]
Nuru, Z. Y. , Arendse, C. J. , Muller, T. F. , Khamlich, S. , and Maaza, M. , 2014, “ Thermal Stability of Electron Beam Evaporated AlxOy/Pt/AlxOy Multilayer Solar Absorber Coatings,” Sol. Energy Mater. Sol. Cells, 120(Pt. B), pp. 473–480. [CrossRef]
Sibin, K. P. , John, S. , and Barshilia, H. C. , 2015, “ Control of Thermal Emittance of Stainless Steel Using Sputtered Tungsten Thin Films for Solar Thermal Power Applications,” Sol. Energy Mater. Sol. Cells, 133, pp. 1–7. [CrossRef]
Dan, A. , Jyothi, J. , Chattopadhyay, K. , Barshilia, H. C. , and Basu, B. , 2016, “ Spectrally Selective Absorber Coating of WAlN/WAlON/Al2O3for Solar Thermal Applications,” Sol. Energy Mater. Sol. Cells, 157, pp. 716–726. [CrossRef]
Dan, A. , Chattopadhyay, K. , Barshilia, H. C. , and Basu, B. , 2016, “ Angular Solar Absorptance and Thermal Stability of W/WAlN/WAlON/Al2O3-Based Solar Selective Absorber Coating,” Appl. Therm. Eng., 109, pp. 997–1002. [CrossRef]
Dan, A. , Chattopadhyay, K. , Barshilia, H. C. , and Basu, B. , 2016, “ Colored Selective Absorber Coating With Excellent Durability,” Thin Solid Films, 620, pp. 17–22. [CrossRef]
Selvakumar, N. , Manikandanath, N. T. , Biswas, A. , and Barshilia, H. C. , 2012, “ Design and Fabrication of Highly Thermally Stable HfMoN/HfON/Al2O3 Tandem Absorber for Solar Thermal Power Generation Applications,” Sol. Energy Mater. Sol. Cells, 102, pp. 86–92. [CrossRef]
Mahadik, D. B. , Lakshmi, R. V. , and Barshilia, H. C. , 2015, “ High Performance Single Layer Nano-Porous Antireflection Coatings on Glass by Sol-Gel Process for Solar Energy Applications,” Sol. Energy Mater. Sol. Cells, 140, pp. 61–68. [CrossRef]
Khamlich, S. , McCrindle, R. , Nuru, Z. Y. , Cingo, N. , and Maaza, M. , 2013, “ Annealing Effect on the Structural and Optical Properties of Cr/α-Cr2O3 Monodispersed Particles Based Solar Absorbers,” Appl. Surf. Sci., 265, pp. 745–749. [CrossRef]
Wang, H. , Prasad Sivan, V. , Mitchell, A. , Rosengarten, G. , Phelan, P. , and Wang, L. , 2015, “ Highly Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting,” Sol. Energy Mater. Sol. Cells, 137, pp. 235–242. [CrossRef]
Wu, Y. , Wang, C. , Sun, Y. , Ning, Y. , Liu, Y. , Xue, Y. , Wang, W. , Zhao, S. , Tomasella, E. , and Bousquet, A. , 2015, “ Study on the Thermal Stability of Al/NbTiSiN/NbTiSiON/SiO2 Solar Selective Absorbing Coating,” Sol. Energy, 119, pp. 18–28. [CrossRef]
Wu, Y. , Wang, C. , Sun, Y. , Xue, Y. , Ning, Y. , Wang, W. , Zhao, S. , Tomasella, E. , and Bousquet, A. , 2015, “ Optical Simulation and Experimental Optimization of Al/NbMoN/NbMoON/SiO2solar Selective Absorbing Coatings,” Sol. Energy Mater. Sol. Cells, 134, pp. 373–380. [CrossRef]
Song, P. , Wu, Y. , Wang, L. , Sun, Y. , Ning, Y. , Zhang, Y. , Dai, B. , Tomasella, E. , Bousquet, A. , and Wang, C. , 2017, “ The Investigation of Thermal Stability of Al/NbMoN/NbMoON/SiO2 solar Selective Absorbing Coating,” Sol. Energy Mater. Sol. Cells, 171, pp. 253–257. [CrossRef]
Oyinlola, M. A. , Shire, G. S. F. , and Moss, R. W. , 2015, “ Investigating the Effects of Geometry in Solar Thermal Absorber Plates With Micro-Channels,” Int. J. Heat Mass Transfer, 90, pp. 552–560. [CrossRef]
Du, D. , Darkwa, J. , and Kokogiannakis, G. , 2013, “ Thermal Management Systems for Photovoltaics (PV) Installations: A Critical Review,” Sol. Energy, 97, pp. 238–254. [CrossRef]
Bellos, E. , Tzivanidis, C. , and Tsimpoukis, D. , 2017, “ Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers,” Sol. Energy, 157, pp. 514–531. [CrossRef]
Demagh, Y. , Bordja, I. , Kabar, Y. , and Benmoussa, H. , 2015, “ A Design Method of an S-Curved Parabolic Trough Collector Absorber With a Three-Dimensional Heat Flux Density Distribution,” Sol. Energy, 122, pp. 873–884. [CrossRef]
Pavlovic, S. , Bellos, E. , Le Roux, W. G. , Stefanovic, V. , and Tzivanidis, C. , 2017, “ Experimental Investigation and Parametric Analysis of a Solar Thermal Dish Collector With Spiral Absorber,” Appl. Therm. Eng., 121, pp. 126–135. [CrossRef]
Samuel Hansen, R. , and Kalidasa Murugavel, K. , 2017, “ Enhancement of Integrated Solar Still Using Different New Absorber Configurations: An Experimental Approach,” Desalination, 422, pp. 59–67. [CrossRef]
Velmurugan, V. , Gopalakrishnan, M. , Raghu, R. , and Srithar, K. , 2008, “ Single Basin Solar Still With Fin for Enhancing Productivity,” Energy Convers. Manage., 49(10), pp. 2602–2608. [CrossRef]
Arunkumar, T. , Vinothkumar, K. , Ahsan, A. , Jayaprakash, R. , and Kumar, S. , 2012, “ Experimental Study on Various Solar Still Designs,” ISRN Renew. Energy, 2012, p. 569381.
Ayoub, G. M. , Al-Hindi, M. , and Malaeb, L. , 2015, “ A Solar Still Desalination System With Enhanced Productivity,” Desalin. Water Treat., 53(12), pp. 3179–3186. [CrossRef]
Jaurker, A. R. , Saini, J. S. , and Gandhi, B. K. , 2006, “ Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness,” Sol. Energy, 80(8), pp. 895–907. [CrossRef]
Ansari, M. , and Bazargan, M. , 2018, “ Optimization of Flat Plate Solar Air Heaters With Ribbed Surfaces,” Appl. Therm. Eng., 136, pp. 356–363. [CrossRef]
Kumar, R. , Varun ., and Kumar, A. , 2017, “ Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations,” ASME J. Sol. Energy Eng., 139(4), p. 041013. [CrossRef]
Skullong, S. , Promvonge, P. , Thianpong, C. , Jayranaiwachira, N. , and Pimsarn, M. , 2017, “ Heat Transfer Augmentation in a Solar Air Heater Channel With Combined Winglets and Wavy Grooves on Absorber Plate,” Appl. Therm. Eng., 122, pp. 268–284. [CrossRef]
Chamoli, S. , Lu, R. , Xu, D. , and Yu, P. , 2018, “ Thermal Performance Improvement of a Solar Air Heater Fitted With Winglet Vortex Generators,” Sol. Energy, 159, pp. 966–983. [CrossRef]
Pandey, N. K. , Bajpai, V. K. , and Varun , 2016, “ Experimental Investigation of Heat Transfer Augmentation Using Multiple Arcs With Gap on Absorber Plate of Solar Air Heater,” Sol. Energy, 134, pp. 314–326. [CrossRef]
Kaminski, P. M. , Womack, G. , and Walls, J. M. , 2014, “ Broadband Anti-Reflection Coatings for Thin Film Photovoltaics,” IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, June 8–13, pp. 2778–2783.
Nostell, P. , Roos, A. , and Karlsson, B. , 1998, “ Antireflection of Glazings for Solar Energy Applications,” Sol. Energy Sol. Cells, 54(1–4), pp. 223–233. [CrossRef]
Nostell, P. , Roos, A. , and Karlsson, B. , 1999, “ Optical and Mechanical Properties of Sol-Gel Antireflective Films for Solar Energy Applications,” Thin Solid Films, 351(1–2), pp. 170–175. [CrossRef]
Hody-Le Caër, V. , De Chambrier, E. , Mertin, S. , Joly, M. , Schaer, M. , Scartezzini, J. L. , and Schüler, A. , 2013, “ Optical and Morphological Characterisation of Low Refractive Index Materials for Coatings on Solar Collector Glazing,” Renewable Energy, 53, pp. 27–34. [CrossRef]
Youcef-Ali, S. , 2005, “ Study and Optimization of the Thermal Performances of the Offset Rectangular Plate Fin Absorber Plates, With Various Glazing,” Renewable Energy, 30(2), pp. 271–280. [CrossRef]
Schüler, A. , Boudaden, J. , Oelhafen, P. , De Chambrier, E. , Roecker, C. , and Scartezzini, J. L. , 2005, “ Thin Film Multilayer Design Types for Colored Glazed Thermal Solar Collectors,” Sol. Energy Mater. Sol. Cells, 89(2–3), pp. 219–231. [CrossRef]
Schüler, A. , Dutta, D. , Chambrier, E. , De , Roecker, C. , Temmerman, G. , De , Oelhafen, P. , and Scartezzini, J.-L. S. , 2006, “ Sol—Gel Deposition and Optical Characterization of Multilayered SiO 2/Ti 1 À x Si x O 2 Coatings on Solar Collector Glasses,” Sol. Energy Mater. Sol. Cells, 90(17), pp. 2894–2907. [CrossRef]
Ghosh, S. S. , Biswas, P. K. , and Neogi, S. , 2017, “ Thermal Performance of Solar Cooker With Special Cover Glass of Low-e Antimony Doped Indium Oxide (IAO) Coating,” Appl. Therm. Eng., 113, pp. 103–111. [CrossRef]
Khullar, V. , Mahendra, P. , and Mittal, M. K. , 2017, “ Applicability OF Heat Mirrors in Reducing Thermal Losses in Concentrating Solar Collectors,” ASME J. Therm. Sci. Eng. Appl., 10(6), p. 061004.
Buongiorno, J. , Venerus, D. C. , Prabhat, N. , Mckrell, T. , Townsend, J. , Tolmachev, Y. V. , Keblinski, P. , Hu, L. , Alvarado, J. L. , Bang, I. C. , Sandra, W. , Bonetti, M. , Botz, F. , Cecere, A. , Chang, Y. , Chen, G. , Chen, H. , Jae, S. , Chyu, M. K. , Das, S. K. , Paola, R. , Di , Ding, Y. , Dubois, F. , Dzido, G. , Escher, W. , Funfschilling, D. , Galand, Q. , Gao, J. , Gharagozloo, P. E. , Kenneth, E. , Gutierrez, J. G. , Hong, H. , Horton, M. , Hwang, K. S. , Iorio, C. S. , Jang, S. P. , Jarzebski, A. B. , Jiang, Y. , Jin, L. , Kabelac, S. , Kamath, A. , Kedzierski, M. A. , Geok, L. , Kim, C. , Kim, J. , Kim, S. , Lee, S. H. , Leong, K. C. , Manna, I. , Michel, B. , Ni, R. , Patel, H. E. , Philip, J. , Poulikakos, D. , Reynaud, C. , Savino, R. , Singh, P. K. , Song, P. , Sundararajan, T. , Timofeeva, E. , Tritcak, T. , Aleksandr, N. , Vaerenbergh, S. , Van , Wen, D. , Witharana, S. , Yang, C. , Yeh, W. , Buongiorno, J. , Venerus, D. C. , Prabhat, N. , Mckrell, T. , Townsend, J. , Christianson, R. , Tolmachev, Y. V. , Keblinski, P. , Hu, L. , Alvarado, J. L. , Bang, I. C. , Bishnoi, S. W. , and Bonetti, M. , 2009, “ A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312.
Lenert, A. , and Wang, E. N. , 2012, “ Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion,” Sol. Energy, 86(1), pp. 253–265. [CrossRef]
Taylor, R. , Coulombe, S. , Otanicar, T. , Phelan, P. , Gunawan, A. , Lv, W. , Rosengarten, G. , Prasher, R. , and Tyagi, H. , 2013, “ Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids,” J. Appl. Phys., 113(1), p. 011301.
Hassani, S. , Taylor, R. A. , Mekhilef, S. , and Saidur, R. , 2016, “ A Cascade Nanofluid-Based PV/T System With Optimized Optical and Thermal Properties,” Energy, 112, pp. 963–975. [CrossRef]
Taylor, R. A. , Phelan, P. E. , Otanicar, T. P. , Walker, C. A. , Nguyen, M. , Trimble, S. , and Prasher, R. , 2011, “ Applicability of Nanofluids in High Flux Solar Collectors,” J. Renewable Sustainable Energy, 3(2), p. 23104. [CrossRef]
Polvongsri, S. , and Kiatsiriroat, T. , 2014, “ Performance Analysis of Flat-Plate Solar Collector Having Silver Nanofluid as a Working Fluid,” Heat Transfer Eng., 35(13), pp. 1183–1191. [CrossRef]
Gómez-Villarejo, R. , Martín, E. I. , Navas, J. , Sánchez-Coronilla, A. , Aguilar, T. , Gallardo, J. J. , Alcántara, R. , De los Santos, D. , Carrillo-Berdugo, I. , and Fernández-Lorenzo, C. , 2017, “ Ag-Based Nanofluidic System to Enhance Heat Transfer Fluids for Concentrating Solar Power: Nano-Level Insights,” Appl. Energy, 194, pp. 19–29. [CrossRef]
Zhang, Z. , Yuan, Y. , Zhang, N. , Sun, Q. , Cao, X. , and Sun, L. , 2017, “ Thermal Properties Enforcement of Carbonate Ternary Via Lithium Fluoride: A Heat Transfer Fluid for Concentrating Solar Power Systems,” Renewable Energy, 111, pp. 523–531. [CrossRef]
Zhang, Z. , Yuan, Y. , Ouyang, L. , Sun, Q. , Cao, X. , and Alelyani, S. , 2017, “ Enhanced Thermal Properties of Li2CO3–Na2CO3–K2CO3 Nanofluids With Nanoalumina for Heat Transfer in High-Temperature CSP Systems,” J. Therm. Anal. Calorim., 128(3), pp. 1783–1792. [CrossRef]
Taylor, R. A. , Phelan, P. E. , Otanicar, T. , Adrian, R. J. , and Prasher, R. S. , 2009, “ Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser,” Appl. Phys. Lett., 95(16), p. 161907.
Otanicar, T. P. , Phelan, P. E. , Prasher, R. S. , Rosengarten, G. , and Taylor, R. A. , 2010, “ Nanofluid-Based Direct Absorption Solar Collector,” J. Renewable Sustainable Energy, 2(3), p. 33102. [CrossRef]
Khullar, V. , Tyagi, H. , Hordy, N. , Otanicar, T. P. , Hewakuruppu, Y. , Modi, P. , and Taylor, R. A. , 2014, “ Harvesting Solar Thermal Energy Through Nanofluid-Based Volumetric Absorption Systems,” Int. J. Heat Mass Transfer, 77, pp. 377–384. [CrossRef]
Bhalla, V. , and Tyagi, H. , 2017, “ Solar Energy Harvesting by Cobalt Oxide Nanoparticles, a Nanofluid Absorption Based System,” Sustain. Energy Technol. Assess., 24, pp. 45–54.
Freedman, J. P. , Wang, H. , and Prasher, R. S. , 2018, “ Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications,” ASME J. Sol. Energy Eng., 140(5), p. 051008. [CrossRef]
Tyagi, H. , Phelan, P. , and Prasher, R. , 2009, “ Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector,” ASME J. Sol. Energy Eng., 131(4), p. 041004. [CrossRef]
Milanese, M. , Colangelo, G. , Cretì, A. , Lomascolo, M. , Iacobazzi, F. , and De Risi, A. , 2016, “ Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power Systems—Part I: Water-Based Nanofluids Behavior,” Sol. Energy Mater. Sol. Cells, 147, pp. 315–320. [CrossRef]
Khullar, V. , Tyagi, H. , Phelan, P. E. , Otanicar, T. P. , Singh, H. , and Taylor, R. A. , 2013, “ Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector,” ASME J. Nanotechnol. Eng. Med., 3(3), p. 031003. [CrossRef]
Milanese, M. , Colangelo, G. , Cretì, A. , Lomascolo, M. , Iacobazzi, F. , and De Risi, A. , 2016, “ Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power Systems—Part II: ZnO, CeO2, Fe2O3 nanoparticles Behavior,” Sol. Energy Mater. Sol. Cells, 147, pp. 321–326. [CrossRef]
Muraleedharan, M. , Singh, H. , Suresh, S. , and Udayakumar, M. , 2016, “ Directly Absorbing Therminol-Al2O3nano Heat Transfer Fluid for Linear Solar Concentrating Collectors,” Sol. Energy, 137, pp. 134–142. [CrossRef]
Bhalla, V. , Khullar, V. , and Tyagi, H. , 2018, “ Experimental Investigation of Photo-Thermal Analysis of Blended Nanoparticles (Al2O3/Co3O4) for Direct Absorption Solar Thermal Collector,” Renewable Energy, 123, pp. 616–626. [CrossRef]
Taylor, R. A. , Phelan, P. E. , Adrian, R. J. , Gunawan, A. , and Otanicar, T. P. , 2012, “ Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids,” Int. J. Therm. Sci., 56, pp. 1–11. [CrossRef]
Garg, K. , Khullar, V. , Das, S. K. , and Tyagi, H. , 2018, “ Performance Evaluation of a Brine-Recirculation Multistage Flash Desalination System Coupled With Nanofluid-Based Direct Absorption Solar Collector,” Renewable Energy, 122, pp. 140–151. [CrossRef]
Quesada, G. , Guillon, L. , Rousse, D. R. , Mehrtash, M. , Dutil, Y. , and Paradis, P. L. , 2015, “ Tracking Strategy for Photovoltaic Solar Systems in High Latitudes,” Energy Convers. Manage., 103, pp. 147–156. [CrossRef]
Lu, S. , Dai, R. , Zhang, G. , and Wang, Q. , 2018, “ Investigation of Street Lamp With Automatic Solar Tracking System,” ASME J. Sol. Energy Eng., 140(6), p. 061002. [CrossRef]
Ferreira, L. A. S. , Loschi, H. J. , Rodriguez, A. A. D. , Iano, Y. , and do Nascimento, D. A. , 2018, “ A Solar Tracking System Based on Local Solar Time Integrated to Photovoltaic Systems,” ASME J. Sol. Energy Eng., 140(2), p. 021010. [CrossRef]
Salgado-Conrado, L. , 2018, “ A Review on Sun Position Sensors Used in Solar Applications,” Renewable Sustainable Energy Rev., 82, pp. 2128–2146. [CrossRef]
Nsengiyumva, W. , Chen, S. G. , Hu, L. , and Chen, X. , 2018, “ Recent Advancements and Challenges in Solar Tracking Systems (STS): a Review,” Renewable Sustainable Energy Rev., 81, pp. 250–279. [CrossRef]
Sefa, I. , Demirtas, M. , and Çolak, I. , 2009, “ Application of One-Axis Sun Tracking System,” Energy Convers. Manage, 50(11), pp. 2709–2718. [CrossRef]
Poulek, V. , Khudysh, A. , and Libra, M. , 2016, “ Self Powered Solar Tracker for Low Concentration PV (LCPV) Systems,” Sol. Energy, 127, pp. 109–112. [CrossRef]
Sidek, M. H. M. , Azis, N. , Hasan, W. Z. W. , Ab Kadir, M. Z. A. , Shafie, S. , and Radzi, M. A. M. , 2017, “ Automated Positioning Dual-Axis Solar Tracking System With Precision Elevation and Azimuth Angle Control,” Energy, 127, p. 803. [CrossRef]
Barker, L. , Neber, M. , and Lee, H. , 2013, “ Design of a Low-Profile Two-Axis Solar Tracker,” Sol. Energy, 97, pp. 569–576. [CrossRef]
Lim, T. , Kwak, P. , Song, K. , Kim, N. , and Lee, J. , 2016, “ Automated Dual-Axis Planar Solar Tracker With Controllable Vertical Displacement for Concentrating Solar Microcell Arrays,” Prog. Photovolt. Res. Appl., 15(3–4), pp. 326–334.
El Jaouhari, Z. , Zaz, Y. , Moughyt, S. , El Kadmiri, O. , and El Kadmiri, Z. , 2018, “ Dual-Axis Solar Tracker Design Based on a Digital Hemispherical Imager,” ASME J. Sol. Energy Eng., 141(1), p. 011001. [CrossRef]
Singh, R. , Kumar, S. , Gehlot, A. , and Pachauri, R. , 2018, “ An Imperative Role of Sun Trackers in Photovoltaic Technology: A Review,” Renewable Sustainable Energy Rev., 82, pp. 3263–3278. [CrossRef]
Rubio, F. R. , Ortega, M. G. , Gordillo, F. , and López-Martínez, M. , 2007, “ Application of New Control Strategy for Sun Tracking,” Energy Convers. Manage., 48(7), pp. 2174–2184. [CrossRef]
Lamoureux, A. , Lee, K. , Shlian, M. , Forrest, S. R. , and Shtein, M. , 2015, “ Dynamic Kirigami Structures for Integrated Solar Tracking,” Nat. Commun., 6(1), pp. 1–6. [CrossRef]
Yao, Y. , Hu, Y. , Gao, S. , Yang, G. , and Du, J. , 2014, “ A Multipurpose Dual-Axis Solar Tracker With Two Tracking Strategies,” Renewable Energy, 72, pp. 88–98. [CrossRef]
Sabiha, M. A. , Saidur, R. , Mekhilef, S. , and Mahian, O. , 2015, “ Progress and Latest Developments of Evacuated Tube Solar Collectors,” Renewable Sustainable Energy Rev., 51, pp. 1038–1054. [CrossRef]
Kumar, S. S. , Kumar, K. M. , and Kumar, S. R. S. , 2017, “ Design of Evacuated Tube Solar Collector With Heat Pipe,” Materials Today: Proceedings, 4(14), pp. 12641–12646.
Khan, M. M. A. , Ibrahim, N. I. , Mahbubul, I. M. , Muhammad. Ali, H. , Saidur, R. , and Al-Sulaiman, F. A. , 2018, “ Evaluation of Solar Collector Designs With Integrated Latent Heat Thermal Energy Storage: A Review,” Sol. Energy, 166, pp. 334–350. [CrossRef]
Zielinski, A. , Dillon, H. , Baldwin, B. , Forinash, C. , Zada, K. , Stillinger, C. , and Dieter, K. , 2016, “ Design and Performance of a Small Hybrid Solar Collector,” ASME Paper No. POWER2016-59098.
Shafii, M. B. , Jahangiri Mamouri, S. , Lotfi, M. M. , and Jafari Mosleh, H. , 2016, “ A Modified Solar Desalination System Using Evacuated Tube Collector,” Desalination, 396, pp. 30–38. [CrossRef]
Bataineh, M. K. , and AL-Karasneh, N. A. , 2016, “ Direct Solar Steam Generation Inside Evacuated Tube Absorber,” AIMS Energy, 4(6), pp. 921–935. [CrossRef]
Jafari Mosleh, H. , Mamouri, S. J. , Shafii, M. B. , and Hakim Sima, A. , 2015, “ A New Desalination System Using a Combination of Heat Pipe, Evacuated Tube and Parabolic Through Collector,” Energy Convers. Manage., 99, pp. 141–150. [CrossRef]
Papadimitratos, A. , Sobhansarbandi, S. , Pozdin, V. , Zakhidov, A. , and Hassanipour, F. , 2016, “ Evacuated Tube Solar Collectors Integrated With Phase Change Materials,” Sol. Energy, 129, pp. 10–19. [CrossRef]
Feliński, P. , and Sekret, R. , 2016, “ Experimental Study of Evacuated Tube Collector/Storage System Containing Paraffin as a PCM,” Energy, 114, pp. 1063–1072. [CrossRef]
Abokersh, M. H. , El-Morsi, M. , Sharaf, O. , and Abdelrahman, W. , 2017, “ An Experimental Evaluation of Direct Flow Evacuated Tube Solar Collector Integrated With Phase Change Material,” Energy, 139, pp. 1111–1125. [CrossRef]
Sobhansarbandi, S. , Martinez, P. M. , Papadimitratos, A. , Zakhidov, A. , and Hassanipour, F. , 2017, “ Evacuated Tube Solar Collector With Multifunctional Absorber Layers,” Sol. Energy, 146, pp. 342–350. [CrossRef]
Kumar, S. , Dubey, A. , and Tiwari, G. N. , 2014, “ A Solar Still Augmented With an Evacuated Tube Collector in Forced Mode,” Desalination, 347, pp. 15–24. [CrossRef]
Kuang, R. , Song, Y. , Li, Z. , and Gu, Q. , 2018, “ The Mechanical Analysis of an All-Glass Solar Evacuated Tube With Spiral Inner Tube for Seawater Desalination,” ASME J. Sol. Energy Eng., 140(3), p. 031008.
Kumar, R. , Adhikari, R. S. , Garg, H. P. , and Kumar, A. , 2001, “ Thermal Performance of a Solar Pressure Cooker Based on Evacuated Tube Solar Collector,” Appl. Therm. Eng., 21(16), pp. 1699–1706. [CrossRef]
Fadhel, M. I. , Sopian, K. , and Daud, W. R. W. , 2010, “ Performance Analysis of Solar-Assisted Chemical Heat-Pump Dryer,” Sol. Energy, 84(11), pp. 1920–1928. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Working mechanism of a solar thermal power plant

Grahic Jump Location
Fig. 2

Cross section of a flat-plate solar thermal collector

Grahic Jump Location
Fig. 3

Absorptivity of an ideal solar selective surface at different cutoff wavelengths (Adapted from Ref. [69])

Grahic Jump Location
Fig. 4

Emissivity of an ideal solar selective surface as a function of surface temperature at different cutoff wavelengths (Adapted from Ref. [69])

Grahic Jump Location
Fig. 5

Absorptivity of commonly available selective coatings (Adapted from Ref. [70])

Grahic Jump Location
Fig. 6

Emissivity of commonly available selective coatings at different surface temperatures (Adapted from Ref. [70])

Grahic Jump Location
Fig. 7

Types of solar selective coatings: (a) intrinsic absorber, (b) semiconductor metal tandem absorber, (c) cermet absorber, (d) textured absorber, (e) DMD absorber, (f) multilayer absorber, and (g) selectively solar-transmitting coating on a blackbody-like absorber

Grahic Jump Location
Fig. 8

Change in the spectral selectivity of coating due to annealing in air at different temperatures for 2 h (Adapted from Ref. [107])

Grahic Jump Location
Fig. 9

Solar selectivity versus tungsten (W) coating thickness on SS substrate (Adapted from Ref. [110])

Grahic Jump Location
Fig. 10

Absorptance and emittance values for SS substrates with different combinations of the solar selective coating (Adapted from Ref. [111])

Grahic Jump Location
Fig. 11

A schematic of tandem absorber along with the absorptance and emittance of different layers of the tandem absorber (Adapted from Ref. [114])

Grahic Jump Location
Fig. 12

Schematic of convergent-divergent absorber tube (Adapted from Ref. [76])

Grahic Jump Location
Fig. 13

Schematic of the S-curved/sinusoidal absorber tube (Adapted from Ref. [124])

Grahic Jump Location
Fig. 14

Schematic of solar thermal dish collector with a spiral absorber (Adapted from Ref. [125])

Grahic Jump Location
Fig. 15

Spectral transmittance of 6 mm-thick glass with various iron oxide contents for incident radiation at normal incidence (Adapted from Ref. [56])

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In