Review Article

Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes

[+] Author and Article Information
Justin Broughton

G. W. Woodruff School of Mechanical
Georgia Institute of Technology,
771 Ferst Drive,
Atlanta, GA 30332

Vanessa Smet, Rao R. Tummala

3D Systems Packaging Research Center,
Georgia Institute of Technology,
Atlanta, GA 30332

Yogendra K. Joshi

G. W. Woodruff School of Mechanical
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: yogendra.joshi@me.gatech.edu

1Corresponding author.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received December 11, 2017; final manuscript received July 9, 2018; published online August 20, 2018. Assoc. Editor: Ercan Dede.

J. Electron. Packag 140(4), 040801 (Aug 20, 2018) (11 pages) Paper No: EP-17-1128; doi: 10.1115/1.4040828 History: Received December 11, 2017; Revised July 09, 2018

Due to its superior electrical and thermal characteristics, silicon carbide power modules will soon replace silicon modules to be mass-produced and implemented in all-electric and hybrid-electric vehicles (HEVs). Redesign of the power modules will be required to take full advantage of these newer devices. A particular area of interest is high-temperature power modules, as under-hood temperatures often exceed maximum silicon device temperatures. This review will examine thermal packaging options for standard Si power modules and various power modules in recent all-electric and HEVs. Then, thermal packaging options for die-attach, thermal interface materials (TIM), and liquid cooling are discussed for their feasibility in next-generation silicon carbide (SiC) power modules.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


ARPA, 2013, “SWITCHES Non-SBIR Program Overview,” ARPA-E, Report. https://arpa-e.energy.gov/sites/default/files/documents/files/SWITCHES_Program%20Overview.pdf
Disney, D. , Nie, H. , Edwards, A. , Bour, D. , Shah, H. , and Kizilyalli, I. , 2013, “Vertical Power Diodes in Bulk GaN,” 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Kanazawa, Japan, May 26–30, pp. 59–62.
Tolbert, L. M. , King, T. J. , Ozpineci, B. , Campbell, J. B. , Muralidharan, G. , Rizy, D. T. , Sabau, A. S. , Zhang, H. , Zhang, W. , and Xu, Y. , 2005, “Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2005/230.
Mantooth, H. A. , Glover, M. D. , and Shepherd, P. , 2014, “Wide Bandgap Technologies and Their Implications on Miniaturizing Power Electronic Systems,” IEEE J. Emerging Sel. Top. Power Electron., 2(3), pp. 374–385. [CrossRef]
Villamor, A. , Liao, J. , and Txapartegi, M. G. , 2017, The Power Electronics Industry Is Showing Steady Growth and High Dynamism, Yole Développement, Lyon, France.
Bindra, A. , 2015, “Wide-Bandgap-Based Power Devices: Reshaping the Power Electronics Landscape,” IEEE Power Electron. Mag., 2(1), pp. 42–47. [CrossRef]
Millán, J. , Godignon, P. , Perpiñà, X. , Pérez-Tomás, A. , and Rebollo, J. , 2014, “A Survey of Wide Bandgap Power Semiconductor Devices,” IEEE Trans. Power Electron., 29(5), pp. 2155–2163. [CrossRef]
Paskova, T. , and Evans, K. R. , 2009, “GaN Substrate–Progress, Status, and Prospects,” IEEE J. Sel. Top. Quantum Electron., 15(4), pp. 1041–1052. [CrossRef]
Bar-Cohen, A. , Albrecht, J. D. , and Maurer, J. J. , 2011, “Near-Junction Thermal Management for Wide Bandgap Devices,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, Oct. 16–19, pp. 1–5.
Jones, E. A. , Wang, F. F. , and Costinett, D. , 2016, “Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges,” IEEE J. Emerging Sel. Top. Power Electron., 4(3), pp. 707–719. [CrossRef]
Toyota, 2015, “Toyota to Trial New SiC Power Semiconductor Technology,” Toyota Motor Corporation, Toyota City, Japan, accessed July 23, 2018, https://newsroom.toyota.co.jp/en/detail/5692153
Mitsubishi, 2015, “Mitsubishi Electric's Railcar Traction Inverter With All-SiC Power Modules Achieves 40% Power Savings,” Mitsubishi Electric Corporation, Tokyo, Japan, accessed July 23, 2018, http://www.mitsubishielectric.com/news/2015/0622-a.html
Ye, H. , Lin, M. , and Basaran, C. , 2002, “Failure Modes and FEM Analysis of Power Electronic Packaging,” Finite Elem. Anal. Des., 38(7), pp. 601–612. [CrossRef]
Dietrich, P. , 2013, “Trends in Automotive Power Semiconductor Packaging,” Microelectron. Reliab., 53(9–11), pp. 1681–1686. [CrossRef]
Yin, S. , Tseng, K. J. , and Zhao, J. , 2013, “Design of AlN-Based Micro-Channel Heat Sink in Direct Bond Copper for Power Electronics Packaging,” Appl. Therm. Eng., 52(1), pp. 120–129. [CrossRef]
Coppola, L. , Huff, D. , Wang, F. , Burgos, R. , and Boroyevich, D. , 2007, “Survey on High-Temperature Packaging Materials for SiC-Based Power Electronics Modules,” IEEE Power Electronics Specialists Conference (PESC), Orlando, FL, June 17–21, pp. 2234–2240.
Fukumoto, A. , Berry, D. , Ngo, K. D. T. , and Guo-Quan Lu, K. D. T. , 2014, “Effects of Extreme Temperature Swings (−55 °C to 250 °C) on Silicon Nitride Active Metal Brazing Substrates,” IEEE Trans. Device Mater. Reliab., 14(2), pp. 751–756. [CrossRef]
Qu, X-h. , Zhang, L. , Wu, M. , and Ren, S-B. , 2011, “Review of Metal Matrix Composites With High Thermal Conductivity for Thermal Management Applications,” Prog. Nat. Sci.: Mater. Int., 21(3), pp. 189–197. [CrossRef]
Chu, K. , Guo, H. , Jia, C. , Yin, F. , Zhang, X. , Liang, X. , and Chen, H. , 2010, “Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications,” Nanoscale Res. Lett., 5(5), pp. 868–674. [CrossRef] [PubMed]
Han, X.-H. , Wang, Q. , Park, Y.-G. , T'joen, C. , Sommers, A. , and Jacobi, A. , 2012, “A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks,” Heat Transfer Eng., 33(12), pp. 991–1009. [CrossRef]
Luedtke, A. , 2004, “Thermal Management Materials for High-Performance Applications,” Adv. Eng. Mater., 6(3), pp. 142–144. [CrossRef]
Narumanchi, S. , Mihalic, M. , Kelly, K. , and Eesley, G. , 2008, “Thermal Interface Materials for Power Electronics Applications,” 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, FL, May 28–31, pp. 395–404.
Burress, T. A. , Campbell, S. L. , Coomer, C. , Ayers, C. W. , Wereszczak, A. A. , Cunningham, J. P. , Marlino, L. D. , Seiber, L. E. , and Lin, H. T. , 2011, “Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2010/253. https://www.osti.gov/biblio/1007833-evaluation-toyota-prius-hybrid-synergy-drive-system
Burress, T. A. , Coomer, C. L. , Campbell, S. L. , Wereszczak, A. A. , Cunningham, J. P. , Marlino, L. D. , Seiber, L. E. , and Lin, H.-T. , 2009, “Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2008/185. https://www.osti.gov/biblio/947393/
Liang, Z. , 2015, “Integrated Double Sided Cooling Packaging of Planar SiC Power Modules,” IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, Sept. 20–24, pp. 4907–4912
Schulz-Harder, J. , Exel, K. , and Meyer, A. , 2006, “Direct Liquid Cooling of Power Electronics Devices,” Fourth International Conference on Integrated Power Systems (CIPS), Nuremberg, Germany, June 7–9, pp. 1–6. https://ieeexplore.ieee.org/document/5758077/
Nozawa, N. , Maekawa, T. , Nozawa, S. , and Asakura, K. , 2009, “Development of Power Control Unit for Compact-Class Vehicle,” SAE Int. J. Passenger Cars—Electron. Electr. Syst., 2(1), pp. 376–382. [CrossRef]
Sato, Y. , Ishikawa, S. , Okubo, T. , Abe, M. , and Tamai, K. , 2011, “Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle,” SAE Paper No. 2011-01-0350
Moreno, G. , Bennion, K. , King, C. , and Narumanchi, S. , 2016, “Evaluation of Performance and Opportunities for Improvements in Automotive Power Electronics Systems,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, May 31–June 3, pp. 185–192.
Anwar, M. , Hasan, S. M. N. , Teimor, M. , Korich, M. , and Hayes, M. B. , 2015, “Development of a Power Dense and Environmentally Robust Traction Power Inverter for the Second-Generation Chevrolet VOLT Extended-Range EV,” IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, Sept. 20–24, pp. 6006–6013.
Anwar, M. , Teimor, M. , Savagian, P. , Saito, R. , and Matsuo, T. , 2016, “Compact and High Power Inverter for the Cadillac CT6 Rear Wheel Drive PHEV,” IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, Sept. 18–22, pp. 1–7.
Kitazawa, O. , Kikuchi, T. , Nakashima, M. , Tomita, Y. , Kosugi, H. , and Kaneko, T. , 2016, “Development of Power Control Unit for Compact-Class Vehicle,” SAE Int. J. Altern. Powertrains, 5(2), pp. 278–285. [CrossRef]
Toyota, 2014, “Toyota Develops New Silicon Carbide Power Semiconductor With Higher Efficiency,” Toyota Motor Corporation, Toyota City, Japan, accessed July 23, 2018, https://newsroom.toyota.co.jp/en/detail/2656842
Siow, K. S. , 2014, “Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?,” J. Electron. Mater., 43(4), pp. 947–961. [CrossRef]
Manikam, V. R. , and Cheong, K. Y. , 2011, “Die Attach Materials for High Temperature Applications: A Review,” IEEE Trans. Compon., Packag. Manuf. Technol., 1(4), pp. 457–478. [CrossRef]
Khazaka, R. , Mendizabal, L. , Henry, D. , and Hanna, R. , 2015, “Survey of High-Temperature Reliability of Power Electronics Packaging Components,” IEEE Trans. Power Electron., 30(5), pp. 2456–2464. [CrossRef]
Han, Y. D. , Jing, H. Y. , Nai, S. M. L. , Xu, L. Y. , Tan, C. M. , and Wei, J. , 2010, “Temperature Dependence of Creep and Hardness of Sn-Ag-Cu Lead-Free Solder,” J. Electron. Mater., 39(2), pp. 223–229. [CrossRef]
Papanikolaou, N. C. , Hatzidaki, E. G. , Belivanis, S. , Tzanakakis, G. N. , and Tsatsakis, A. M. , 2005, “Lead Toxicity Update: A Brief Review,” Med. Sci. Monitor, 11(10), pp. RA329–RA336. https://www.ncbi.nlm.nih.gov/pubmed/16192916
Menon, S. , George, E. , Osterman, M. , and Pecht, M. , 2015, “High Lead Solder (Over 85%) Solder in the Electronics Industry: RoHS Exemptions and Alternatives,” J. Mater. Sci.: Mater. Electron., 26(6), pp. 4021–4030. [CrossRef]
Mallampati, S. , Yin, L. , Shaddock, D. , Schoeller, H. , and Cho, J. , 2018, “Lead-Free Alternatives for Interconnects in High-Temperature Electronics,” ASME J. Electron. Packag., 140(1), p. 010906. [CrossRef]
An, T. , and Qin, F. , 2016, “Relationship Between the Intermetallic Compounds Growth and the Microcracking Behavior of Lead-Free Solder Joints,” ASME J. Electron. Packag., 138(1), p. 011002. [CrossRef]
Cook, G. O. , and Sorensen, C. D. , 2011, “Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding,” J. Mater. Sci., 46(16), pp. 5305–5323. [CrossRef]
Siow, K. S. , 2012, “Mechanical Properties of Nano-Silver Joints as Die Attach Materials,” J. Alloys Compd., 514, pp. 6–19. [CrossRef]
Huang, Y. , Hang, C. , Tian, Y. , Zhang, H. , Wang, C. , and Wang, X. , 2017, “Rapid Sintering of Copper Nanopaste by Pulse Current for Power Electronics Packaging,” 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China, Aug. 16–19, pp. 561–564.
Zhao, J. , Yao, M. , and Lee, N. C. , 2017, “Nano-Cu Sintering Paste for High Power Devices Die Attach Applications,” 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, pp. 70–76.
Mahajan, R. , Chiu, C. , and Prasher, R. , 2004, “Thermal Interface Materials: A Brief Review of Design Characteristics and Materials,” Electron. Cooling, 10(1), epub. https://www.electronics-cooling.com/2004/02/thermal-interface-materials-a-brief-review-of-design-characteristics-and-materials/
Wilson, J. , 2005, “Phase Change Material Thermal Properties,” Electron. Cooling, 11(2), epub. https://www.electronics-cooling.com/2005/05/phase-change-material-thermal-properties/
Liu, J. , Wang, T. , Carlberg, B. , and Inoue, M. , 2008, “Recent Progress of Thermal Interface Materials,” Second Electronics System-Integration Technology Conference (ESTC), Greenwich, UK, Sept. 1–4, pp. 351–358.
Yu, H. , Li, L. , Kido, T. , Xi, G. , Xu, G. , and Guo, F. , 2012, “Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material,” J. Appl. Polym. Sci., 124(1), pp. 669–677. [CrossRef]
Xu, J. , Munari, A. , Dalton, E. , Mathewson, A. , and Razeeb, K. M. , 2009, “Silver Nanowire Array-Polymer Composite as Thermal Interface Material,” J. Appl. Phys., 106(12), p. 124310. [CrossRef]
Sanada, K. , Tada, Y. , and Shindo, Y. , 2009, “Thermal Conductivity of Polymer Composites With Close-Packed Structure of Nano and Micro Fillers,” Compos. Part A: Appl. Sci. Manuf., 40(6–7), pp. 724–730. [CrossRef]
Zhang, T. , Sammakia, B. G. , Yang, Z. , and Wang, H. , 2018, “Hybrid Nanocomposite Thermal Interface Materials: The Thermal Conductivity and the Packing Density,” ASME J. Electron. Packag., 140(3), p. 031006. [CrossRef]
Shahil, K. M. F. , and Balandin, A. A. , 2012, “Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials,” Solid State Commun., 152(15), pp. 1331–1340. [CrossRef]
Yu, A. , Ramesh, P. , Itkis, M. E. , Bekyarova, E. , and Haddon, R. C. , 2007, “Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials,” J. Phys. Chem. C, 111(21), pp. 7565–7569. [CrossRef]
Peacock, M. A. , Roy, C. K. , Hamilton, M. C. , Wayne Johnson, R. , Knight, R. W. , and Harris, D. K. , 2016, “Characterization of Transferred Vertically Aligned Carbon Nanotubes Arrays as Thermal Interface Materials,” Int. J. Heat Mass Transfer, 97, pp. 94–100. [CrossRef]
Cola, B. A. , 2010, “Carbon Nanotubes as High Performance Thermal Interface Materials,” Electron. Cooling, 16(1), pp. 10–15. https://www.electronics-cooling.com/2010/04/carbon-nanotubes-as-high-performance-thermal-interface-materials/
McNamara, A. J. , Joshi, Y. , and Zhang, Z. M. , 2012, “Characterization of Nanostructured Thermal Interface Materials—A Review,” Int. J. Therm. Sci., 62, pp. 2–11. [CrossRef]
Wang, P. , McCluskey, P. , and Bar-Cohen, A. , 2013, “Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module,” ASME J. Electron. Packag., 135(2), p. 021001. [CrossRef]
Chow, Y. , 2008, “AC Propulsion Partners With BMW to Build 500 Electric Vehicles,” AC Propulsion, San Dimas, CA.
Chein, R. , Yang, H. , Tsai, T.-H. , and Lu, C. , 2010, “Experimental Study of Heat Sink Performance Using Copper Foams Fabricated by Electroforming,” Microsyst. Technol., 16(7), pp. 1157–1164. [CrossRef]
Wu, W. , Bostanci, H. , Chow, L. C. , Ding, S. J. , Hong, Y. , Su, M. , Kizito, J. P. , Gschwender, L. , and Snyder, C. E. , 2011, “Jet Impingement and Spray Cooling Using Slurry of Nanoencapsulated Phase Change Materials,” Int. J. Heat Mass Transfer, 54(13–14), pp. 2715–2723. [CrossRef]
Ndao, S. , Lee, H. J. , Peles, Y. , and Jensen, M. K. , 2012, “Heat Transfer Enhancement From Micro Pin Fins Subjected to an Impinging Jet,” Int. J. Heat Mass Transfer, 55(1–3), pp. 413–421. [CrossRef]
Dede, E. M. , 2014, “Single-Phase Microchannel Cold Plate for Hybrid Vehicle Electronics,” Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, Mar. 9–13, pp. 118–124.
Dede, E. , and Nomura, T. , 2014, “Topology Optimization of a Hybrid Vehicle Power Electronics Cold Plate,” Second International Electric Vehicle Technology & Automobile Power Electronics Japan Conference (EVTeC & APE), Yokohama, Japan, May 22–24, p. 20144098.
Sharar, D. , Jankowski, N. R. , and Morgan, B. , 2010, “Review of Two-Phase Electronics Cooling for Army Vehicle Applications,” Army Research Laboratory, Adelphia, MD, Report No. ARL-TR-5323.
Ebadian, M. , and Lin, C. , 2011, “A Review of High-Heat-Flux Heat Removal Technologies,” ASME J. Heat Transfer, 133(11), p. 110801. [CrossRef]
Ditri, J. , Hahn, J. , Cadotte, R. , McNulty, M. , and Luppa, D. , 2015, “ Embedded Cooling of High Heat Flux Electronics Utilizing Distributed Microfluidic Impingement Jets,” ASME Paper No. IPACK2015-48689.
Sung, M. K. , and Mudawar, I. , 2006, “Experimental and Numerical Investigation of Single-Phase Heat Transfer Using a Hybrid Jet-Impingement/Micro-Channel Cooling Scheme,” Int. J. Heat Mass Transfer, 49(3–4), pp. 682–694. [CrossRef]
Coursey, J. S. , Kim, J. , and Kiger, K. T. , 2007, “Spray Cooling of High Aspect Ratio Open Microchannels,” ASME J. Heat Transfer, 129(8), pp. 1052–1059. [CrossRef]
Kandlikar, S. G. , and Bapat, A. V. , 2007, “Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal,” Heat Transfer Eng., 28(11), pp. 911–923. [CrossRef]
Rau, M. J. , and Garimella, S. V. , 2013, “Local Two-Phase Heat Transfer From Arrays of Confined and Submerged Impinging Jets,” Int. J. Heat Mass Transfer, 67, pp. 487–498. [CrossRef]
Mudawar, I. , 2001, “Assessment of High-Heat-Flux Thermal Management Schemes,” IEEE Trans. Compon. Packag. Technol., 24(2), pp. 122–141. [CrossRef]
Liang, G. , and Mudawar, I. , 2017, “Review of Spray Cooling --- Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux,” Int. J. Heat Mass Transfer, 115, pp. 1174–1205. [CrossRef]
Kandlikar, S. G. , 2002, “Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels,” Exp. Therm. Fluid Sci., 26(2–4), pp. 389–407. [CrossRef]
Tuckerman, D. B. , and Pease, R. F. W. , 1981, “High-Performance Heat Sinking for VLSI,” IEEE Electron Dev. Lett., 2(5), pp. 126–129. [CrossRef]
Mandel, R. K. , Bae, D. G. , and Ohadi, M. M. , 2018, “Embedded Two-Phase Cooling of High Flux Electronics Via Press-Fit and Bonded FEEDS Coolers,” ASME J. Electron. Packag., 140(3), p. 031003. [CrossRef]
Wang, G. , Cheng, P. , and Bergles, A. E. , 2008, “Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels,” Int. J. Heat Mass Transfer, 51(9–10), pp. 2267–2281. [CrossRef]
Wu, Z. , and Sundén, B. , 2014, “On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels,” Renewable Sustainable Energy Rev., 40, pp. 11–27. [CrossRef]
Huang, H. , Borhani, N. , and Richard Thome, J. , 2016, “Thermal Response of Multi-Microchannel Evaporators During Flow Boiling of Refrigerants Under Transient Heat Loads With Flow Visualization,” ASME J. Electron. Packag., 138(3), p. 031004. [CrossRef]
Bennion, K. , Cousineau, J. , Lustbader, J. , and Narumanchi, S. , 2014, “Novel Power Electronics Three-Dimensional Heat Exchanger,” 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 27–30, pp. 1055–1063.
Kelly, K. , Abraham, T. , Bennion, K. , Bharathan, D. , Narumanchi, S. , and O'Keefe, M. , 2007, “Assessment of Thermal Control Technologies for Cooling Electric Vehicle Power Electronics,” 23rd International Electric Vehicle Symposium (EVS-23), Anaheim, CA, Dec. 2–5, pp. 2–5. https://www.nrel.gov/docs/fy08osti/42267.pdf
Lee, H. , Agonafer, D. D. , Won, Y. , Houshmand, F. , Gorle, C. , Asheghi, M. , and Goodson, K. E. , 2016, “Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices,” ASME J. Electron. Packag., 138(1), p. 010907. [CrossRef]
Vladimirova, K. , Crebier, J. C. , Avenas, Y. , and Schaeffer, C. , 2013, “Drift Region Integrated Microchannels for Direct Cooling of Power Electronic Devices: Advantages and Limitations,” IEEE Trans. Power Electron., 28(5), pp. 2576–2586. [CrossRef]
Bae, D. G. , Mandel, R. K. , Dessiatoun, S. V. , Rajgopal, S. , Roberts, S. P. , Mehregany, M. , and Ohadi, M. M. , 2017, “Embedded Two-Phase Cooling of High Heat Flux Electronics on Silicon Carbide (SiC) Using Thin-Film Evaporation and an Enhanced Delivery System (FEEDS) Manifold-Microchannel Cooler,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 30–June 2, pp. 466–472.
Dede, E. M. , Zhou, F. , and Joshi, S. N. , 2017, “Concepts for Embedded Cooling of Vertical Current Wide Band-Gap Semiconductor Devices,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, May 30–June 2, pp. 508–515.
Mudawar, I. , 1992, “Direct-Immersion Cooling for High Power Electronic Chips,” Intersociety Conference on Thermal Phenomena in Electronic Systems, Austin, TX, Feb. 5–8, pp. 74–84.
O'Keefe, M. , and Kevin, B. , 2007, “A Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options,” IEEE Vehicle Power and Propulsion Conference (VPPC), Arlington, TX, Sept. 9–12, pp. 116–123.
Leighton, D. , 2015, “Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement,” SAE Int. J. Passenger Cars—Mech. Syst., 8(2), pp. 711–720.


Grahic Jump Location
Fig. 1

Comparison of WBG materials' properties versus silicon [1]

Grahic Jump Location
Fig. 2

Visualization of the several power conversion steps present in electric vehicles (traction inverter highlighted)

Grahic Jump Location
Fig. 3

Typical power electronics packaging scheme

Grahic Jump Location
Fig. 4

Standard power electronics packaging scheme seen in the 2004 Toyota Prius

Grahic Jump Location
Fig. 5

2008 Lexus LS 600 h's double-sided cooling module

Grahic Jump Location
Fig. 6

Power electronics packaging scheme in the 2010 Toyota Prius

Grahic Jump Location
Fig. 7

Power electronics module in the 2012 Nissan Leaf

Grahic Jump Location
Fig. 8

Direct substrate cooling in the 2014 Honda Accord

Grahic Jump Location
Fig. 9

2016 Chevrolet Volt's double-sided cooling approach

Grahic Jump Location
Fig. 10

Illustrations of the Nissan Leaf's inverter integrated into the housing, the “snaking” fins in the Chevy Volt, and the Honda Accord's machined fins (from left to right)

Grahic Jump Location
Fig. 11

CTE versus Tm for various high-temperature die-attach technologies [36,39]

Grahic Jump Location
Fig. 12

(a) one-sided CNT arrays, (b) two-sided arrays, and (c) CNT-coated foil array [56]

Grahic Jump Location
Fig. 13

Representative schematics of inverters being cooled by (a) jet impingement, (b) spray cooling, and (c) microchannels



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In