0
SPECIAL SECTION PAPERS

Enhanced Heat Transfer Using Microporous Copper Inverse Opals

[+] Author and Article Information
Hyoungsoon Lee

School of Mechanical Engineering,
Chung-Ang University,
84, Heukseok-ro,
Dongjak-gu 06974, Seoul, South Korea
e-mail: leeh@cau.ac.kr

Tanmoy Maitra

Mechanical Engineering,
University College London,
Gower St. Bloomsbury,
London WC1E 6BT, UK
e-mail: t.maitra@ucl.ac.uk

James Palko

Department of Mechanical Engineering,
University of California, Merced,
5200 N. Lake Rd,
Merced, CA 95343
e-mail: jpalko@ucmerced.edu

Daeyoung Kong

School of Mechanical Engineering,
Chung-Ang University,
84, Heukseok-ro,
Dongjak-gu 06974, Seoul, South Korea
e-mail: kongdy000@cau.ac.kr

Chi Zhang

Department of Mechanical Engineering,
Stanford University,
440 Escondido Mall,
Stanford, CA 94305
e-mail: chzhang@stanford.edu

Michael T. Barako

Department of Mechanical Engineering,
Stanford University,
440 Escondido Mall,
Stanford, CA 94305
e-mail: mbarako@stanford.edu

Yoonjin Won

Department of Mechanical and Aerospace Engineering,
University of California, Irvine,
4200 Engineering Gateway,
Irvine, CA 92697
e-mail: won@uci.edu

Mehdi Asheghi

Department of Mechanical Engineering,
Stanford University,
440 Escondido Mall,
Stanford, CA 94305
e-mail: masheghi@stanford.edu

Kenneth E. Goodson

Department of Mechanical Engineering,
Stanford University,
440 Escondido Mall,
Stanford, CA 94305
e-mail: goodson@stanford.edu

1Corresponding author.

2The authors contributed equally to the paper.

3Present address: NG Next, Northrop Grumman Corporation, 1 Space Park, Redondo Beach, CA 90278.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received January 9, 2018; final manuscript received April 12, 2018; published online May 9, 2018. Assoc. Editor: Kaushik Mysore.

J. Electron. Packag 140(2), 020906 (May 09, 2018) (6 pages) Paper No: EP-18-1003; doi: 10.1115/1.4040088 History: Received January 09, 2018; Revised April 12, 2018

Enhanced boiling is one of the popular cooling schemes in thermal management due to its superior heat transfer characteristics. This study demonstrates the ability of copper inverse opal (CIO) porous structures to enhance pool boiling performance using a thin CIO film with a thickness of ∼10 μm and pore diameter of 5 μm. The microfabricated CIO film increases microscale surface roughness that in turn leads to more active nucleation sites thus improved boiling performance parameters such as heat transfer coefficient (HTC) and critical heat flux (CHF) compared to those of smooth Si surfaces. The experimental results for CIO film show a maximum CHF of 225 W/cm2 (at 16.2 °C superheat) or about three times higher than that of smooth Si surface (80 W/cm2 at 21.6 °C superheat). Optical images showing bubble formation on the microporous copper surface are captured to provide detailed information of bubble departure diameter and frequency.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bar-Cohen, A. , 2013, “Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm,” ASME J. Nanotechnol. Eng. Med., 4(2), p. 020907. [CrossRef]
Won, Y. , Cho, J. , Agonafer, D. , Asheghi, M. , and Goodson, K. E. , 2013, “Cooling Limits for GaN HEMT Technology,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, Oct. 13–16, pp. 1–5.
Bar-Cohen, A. , and Geisler, K. J. L. , 2011, “Cooling the Electronic Brain: Stacking Processing Chips Can Make for More Compact Computers. But it Will Take Advances in Microfluidics to Make Such Dense Number Crunching Practical,” Mech. Eng.; New York, 133(4), pp. 38–41. http://go.galegroup.com/ps/anonymous?p=AONE&sw=w&issn=00256501&v=2.1&it=r&id=GALE%7CA254012988&sid=googleScholar&linkaccess=fulltext&authCount=1&isAnonymousEntry=true
Andresen, M. , Liserre, M. , and Buticchi, G. , 2014, “Review of Active Thermal and Lifetime Control Techniques for Power Electronic Modules,” 16th European Conference on Power Electronics and Applications (EPE-ECCE), Lappeenranta, Finland, Aug. 26–28, pp. 1–10.
Dhillon, N. S. , Buongiorno, J. , and Varanasi, K. K. , 2015, “Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces,” Nat. Commun., 6(1), p. 8247. [CrossRef] [PubMed]
Chu, K.-H. , Enright, R. , and Wang, E. N. , 2012, “Structured Surfaces for Enhanced Pool Boiling Heat Transfer,” Appl. Phys. Lett., 100(24), p. 241603. [CrossRef]
Dullien, F. A. L. , 2012, Porous Media: Fluid Transport and Pore Structure, Academic Press, Cambridge, MA.
Ohadi, M. , Choo, K. , Dessiatoun, S. , and Cetegen, E. , 2013, Next Generation Microchannel Heat Exchangers, Springer, New York. [CrossRef]
Liu, T. , Houshmand, F. , Gorle, C. , Scholl, S. , Lee, H. , Won, Y. , Asheghi, M. , Goodson, K. , Kazemi, H. , and Vanhille, K. , 2015, “Full Scale Simulation of an Integrated Monolithic Heat Sink for Thermal Management of a High Power Density GaN-SiC Chip,” ASME Paper No. IPACK2015-48592.
Husain, A. , and Kim, K.-Y. , 2013, “Design Optimization of Manifold Microchannel Heat Sink Through Evolutionary Algorithm Coupled With Surrogate Model,” IEEE Trans. Compon., Packaging Manuf. Technol., 3(4), pp. 617–624. [CrossRef]
McCarthy, M. , 2015, “Recent Advancements in Micro/Nanoscale Surface Modifications and Their Effects on Pool Boiling Critical Heat Flux and Heat Transfer Coefficient,” Encyclopedia of Two-Phase Heat Transfer and Flow II, World Scientific, Singapore, pp. 275–309. [CrossRef]
Kaviany, M. , 2012, Principles of Heat Transfer in Porous Media, Springer Science & Business Media, Berlin.
Chen, R. , Lu, M.-C. , Srinivasan, V. , Wang, Z. , Cho, H. H. , and Majumdar, A. , 2009, “Nanowires for Enhanced Boiling Heat Transfer,” Nano Lett., 9(2), pp. 548–553. [CrossRef] [PubMed]
Mori, S. , Mt Aznam, S. , and Okuyama, K. , 2015, “Enhancement of the Critical Heat Flux in Saturated Pool Boiling of Water by Nanoparticle-Coating and a Honeycomb Porous Plate,” Int. J. Heat Mass Transfer, 80, pp. 1–6. [CrossRef]
Jaikumar, A. , and Kandlikar, S. G. , 2016, “Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels,” Appl. Phys. Lett., 108(4), p. 041604. [CrossRef]
Palko, J. W. , Lee, H. , Zhang, C. , Dusseault, T. J. , Maitra, T. , Won, Y. , Agonafer, D. D. , Moss, J. , Houshmand, F. , Rong, G. , Wilbur, J. D. , Rockosi, D. , Mykyta, I. , Resler, D. , Altman, D. , Asheghi, M. , Santiago, J. G. , and Goodson, K. E. , 2017, “Extreme Two-Phase Cooling From Laser-Etched Diamond and Conformal, Template-Fabricated Microporous Copper,” Adv. Funct. Mater., 27(45), p. 1703265. [CrossRef]
Palko, J. W. , Zhang, C. , Wilbur, J. D. , Dusseault, T. J. , Asheghi, M. , Goodson, K. E. , and Santiago, J. G. , 2015, “Approaching the Limits of Two-Phase Boiling Heat Transfer: High Heat Flux and Low Superheat,” Appl. Phys. Lett., 107(25), p. 253903. [CrossRef]
Barako, M. T. , Sood, A. , Zhang, C. , Wang, J. , Kodama, T. , Asheghi, M. , Zheng, X. , Braun, P. V. , and Goodson, K. E. , 2016, “Quasi-Ballistic Electronic Thermal Conduction in Metal Inverse Opals,” Nano Lett., 16(4), pp. 2754–2761. [CrossRef] [PubMed]
Bigioni, T. P. , Lin, X.-M. , Nguyen, T. T. , Corwin, E. I. , Witten, T. A. , and Jaeger, H. M. , 2006, “Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers,” Nat. Mater., 5(4), pp. 265–270. [CrossRef] [PubMed]
Barako, M. T. , Roy-Panzer, S. , English, T. S. , Kodama, T. , Asheghi, M. , Kenny, T. W. , and Goodson, K. E. , 2015, “Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites,” ACS Appl. Mater. Interfaces, 7(34), pp. 19251–19259. [CrossRef] [PubMed]
Anderson, T. M. , and Mudawar, I. , 1989, “Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid,” ASME J. Heat Transfer, 111(3), pp. 752–759. [CrossRef]
Ujereh, S. , Fisher, T. , and Mudawar, I. , 2007, “Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling,” Int. J. Heat Mass Transfer, 50(19–20), pp. 4023–4038. [CrossRef]
Kocamustafaogullari, G. , and Ishii, M. , 1983, “Interfacial Area and Nucleation Site Density in Boiling Systems,” Int. J. Heat Mass Transfer, 26(9), pp. 1377–1387. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

Comparisons of boiling curves for the microporous copper structure with a pore diameter of 5 μm and plain Si surface [6]

Grahic Jump Location
Fig. 5

Heat transfer coefficient versus normalized heat flux for the microporous copper structure with a pore diameter of 5 μm and plain Si surface

Grahic Jump Location
Fig. 3

Experimental apparatus (a) pool boiling apparatus, (b) thin film gold resistive mesh heater, and (c) cross-sectional view of test section (not scaled to size)

Grahic Jump Location
Fig. 2

Scanning electron microscopy graphs of microporous copper structures after dissolution of template (step (e) in Fig.1): (a) top view, (b) cross-sectional view, and (c) pores and necks. CIO sample is fabricated using 5 μm sacrificial spheres.

Grahic Jump Location
Fig. 1

Microporous copper fabrication process: (a) drop casting PS spheres on Au layer, (b) heating at 50 °C to evaporate water (solvent), (c) heating at 103 °C for one hour to sinter PS spheres, (d) electrodeposition of copper, and (e) dissolution of PS spheres in THF

Grahic Jump Location
Fig. 6

Flow visualization of pool boiling on the microporous CIO structure with pore diameters of 5 μm at heat fluxes of (a) 18% (40 W/cm2), (b) 53% (120 W/cm2), and (c) 80% (180 W/cm2) of CHF

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In