0
Technical Brief

Fabrication of Anodic Aluminum Oxide Template and Copper Nanowire Surface Fastener

[+] Author and Article Information
Hiromasa Teshima

Department of Mechanical Science and Engineering,
Nagoya University,
Furo-cho,
Chikusa-ku, Nagoya 464-8601, Japan
e-mail: teshima.hiromasa@f.mbox.nagoya-u.ac.jp

Kohei Kojima

Department of Mechanical Science and Engineering, Nagoya University,
Furo-cho,
Chikusa-ku, Nagoya 464-8601, Japan
e-mail: kojima.kouhei@f.mbox.nagoya-u.ac.jp

Yang Ju

Department of Mechanical Science and Engineering,
Nagoya University,
Furo-cho,
Chikusa-ku, Nagoya 464-8601, Japan
e-mail: ju@mech.nagoya-u.ac.jp

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received December 2, 2013; final manuscript received August 14, 2014; published online September 19, 2014. Assoc. Editor: Nils Høivik.

J. Electron. Packag 136(4), 044501 (Sep 19, 2014) (4 pages) Paper No: EP-13-1132; doi: 10.1115/1.4028316 History: Received December 02, 2013; Revised August 14, 2014

Through-hole anodic aluminum oxide (AAO) was fabricated by two steps anodization method. The pore diameter of the AAO was 40 nm. Cu nanowire array was prepared using the fabricated AAO as a template by electrochemical deposition. The mechanical and electrical performances of Cu nanowire surface fastener (NSF) were realized by the interconnection of Cu nanowire arrays. The shear and normal bonding strengths for the Cu NSF with 40 nm diameter nanowires were 3.38 × 10−3 and 2.46 × 10−3 N/cm2, respectively, and the parasitic resistance of it was approximately 22.5 Ω · cm2.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yang, J., Amano, M., and Chen, M., 2012, “Mechanical and Electrical Cold Bonding Based on Metallic Nanowire Surface Fasteners,” Nanotechnology, 23(36), p. 365202. [CrossRef] [PubMed]
Yanagishita, T., Sasaki, M., Nishio, K., and Masuda, H., 2004, “Carbon Nanotubes With a Triangular Cross-Section, Fabricated Using Anodic Porous Alumina as the Template,” Adv. Mater., 16(5), pp. 429–432. [CrossRef]
Jung, W., Jung, S., Kung, P., and Razeghi, M., 2006, “Fabrication of GaN Nanotubular Material Using MOCVD With an Aluminium Oxide Membrane,” Nanotechnology, 17(54), pp. 54–59. [CrossRef]
Ding, J. X., Zapien, J. A., Chen, W. W., Lifshitz, Y., and Lee, S. T., 2004, “Lasing in ZnS Nanowires Grown on Anodic Aluminum Oxide Templates,” Appl. Phys. Lett., 85(12), pp. 2361–2363. [CrossRef]
Zhao, Q., Lu, X., Yu, T., Jin, T., Xiao, S., and Fan, X., 2011, “Synthesis of Dense, Single-Crystalline CrO2 Nanowire Arrays Using AAO Template-Assisted Chemical Vapor Deposition,” Nanotechnology, 22(12), p. 125603. [CrossRef] [PubMed]
Shin, Y. S., Yang, J. H., Park, C. Y., Kwon, M. H., Yoo, J. B., and Yang, C. Q., 2006, “Synthesis of Crystalline Carbon Nanotube Arrays on Anodic Aluminum Oxide Using Catalyst Reduction With Low Pressure Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., 45(1-3A), pp. 1869–1872. [CrossRef]
Martin, C. R., 1994, “Nanomaterials: A Membrane-Based Synthetic Approach,” Science, 266(5193), pp. 1961–1966. [CrossRef] [PubMed]
Wang, J. G., Tian, M. K., Mallouk, T. E., and Chan, M. H., 2004, “Microtwinning in Template-Synthesized Single-Crystal Metal Nanowires,” Phys. Chem. B, 108(3), pp. 841–845. [CrossRef]
Schonenberger, C., Van der Zande, B. M. I., Fokkink, L. G. J., Henry, M., Kruger, M. S., Bachtold, A., Huber, R., and Staufer, U., 1997, “Template Synthesis of Nanowires in Porous Polycarbonate Membranes:  Electrochemistry and Morphology,” J. Phys. Chem. B, 101(28), pp. 5497–5505. [CrossRef]
Yin, A. J., Li, J., Jian, W., Bennett, A. J., and Xu, J. M., 2001, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition,” Appl. Phys Lett., 79(7), p. 1039. [CrossRef]
Yu, J. S., Kim, J. Y., Lee, S., Mbindyo, J. K. N., Martin, B. R., and Mallouk, T. E., 2000,” Template Synthesis of Polymer-Insulated Colloidal Gold Nanowires With Reactive Ends,” Chem. Commun., 24(24), pp. 2445–2446. [CrossRef]
Zhang, X. Y., Zhang, L. D., Lei, Y., Zhao, L. X., and Mao, Y., 2001, “Fabrication and Characterization of Highly Ordered Au Arrays,” Mater. Chem., 11(6), pp. 1732–1734. [CrossRef]
Zhang, X. Y., Zhang, L. D., Lei, Y., Zhao, L. X., and Mao, Y., 2001, “Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays,” Mater. Chem., 13(8), pp. 2511–2515. [CrossRef]
Xu, D. S., Xu, Y. J., Chem, D. P., Guo, L. G., Gui, L. L., and Tang, Y. Q., 2000, “Preparation of CdS Single-Crystal Nanowires by Electrochemically Induced Deposition,” Adv. Mater., 12(7), pp. 520–522. [CrossRef]
Pena, D. J., Mbindto, J. K. N., Carado, A. J., Mallouk, T. E., Keating, C. D., Razavi, B., and Mayer, T. S., 2002, “Template Growth of Photoconductive Metal-Cd-Se-Metal Nanowires,” J. Phys. Chem. B, 106(30), pp. 7458–7462. [CrossRef]
Steinhart, M., Wendorff, J. H., and Greiner, A., 2002, “Polymer Nanotubes by Wetting of Ordered Porous Templates,” Science, 296(5575), p. 1997. [CrossRef]
Johansson, A., Widenkvist, E., Lu, J., Boman, M., and Jansson, U., 2005, “Fabrication of High-Aspect-Ratio Prussian Blue Nanotubes Using a Porous Alumina Template,” Nano Lett., 5(8), pp. 1603–1606. [CrossRef] [PubMed]
Evans, P., Hendren, W., Atkinson, R., Wurtz, G., Dickson, W., Zayats, A., and Pollard, R., 2006, “Growth and Properties of Gold and Nickel Nanorods in Thin Film Alumina,” Nanotechnology, 17(23), pp. 5746–5753. [CrossRef]
Wu, B., and Boland, J. J., 2006, “Synthesis and Dispersion of Isolated High Aspect Ratio Gold Nanowires,” J. Colloid Interface Sci., 303(2), pp. 611–616. [CrossRef] [PubMed]
Pan, S. L., Zeng, D. D., Zhang, H. L., and Li, H. L., 2000, “Preparation of Ordered Array of Nanoscopic Gold Rods by Template Method and Its Optical Properties,” Appl. Phys. A, 70(6), pp. 637–640. [CrossRef]
Gerein, N. J., and Haber, J. A., 2005, “Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates,” J. Phys. Chem., B, 109(37), pp. 17372–17385. [CrossRef]
Wang, J. G., Tian, M. L., Kumar, N., and Malloul, T. E., 2005, “Controllable Template Synthesis of Superconducting Zn Nanowires With Different Microstructures by Electrochemical Deposition,” Nano Lett., 5(7), pp. 1247–1253. [CrossRef] [PubMed]
Yang, S., Zhu, H., Yu, D., Jin, Z., Tang, S., and Du, Y., 2000, “Preparation and Magnetic Property of Fe Nanowire Array,” J. Magn. Mag. Mater., 222(1–2), pp. 97–100. [CrossRef]
Riverosl, G., Green, S., Cortes, A., Gomez, H., Marotti, R. E., and Daichiele, E. A., 2006, “Silver Nanowire Arrays Electrochemically Grown Into Nanoporous Anodic Alumina Templates,” Nanotechnology, 17(2), pp. 561–570. [CrossRef]
Wan, J., Ding, J., and Wang, M., 2010, “Preparation of Gold Nanotube by Direct Electrodeposition for Biosensors,” J. Clusters Sci., 21(4), pp. 669–677. [CrossRef]
Riveros, G., Green, S., Cortes, A., Gomez, H., Marotti, R. E., and Daichiele, A. E., 2006, “Silver Nanowire Arrays Electrochemically Grown Into Nanoporous Anodic Alumina Templates,” Nanotechnology, 17(2), pp. 561–570. [CrossRef]
Xu, X.-J., Fei, G.-T., Yu, W.-H., Wang, X.-W., Chen, L., and Zhang, L.-D., 2006, “Preparation and Formation Mechanism of ZnS Semiconductor Nanowires Made by the Electrochemical Deposition Method,” Nanotechnology, 17(2), pp. 426–429. [CrossRef]
Wu, B., and Boland, J., 2006, “Synthesis and Dispersion of Isolated High Aspect Ratio Gold Nanowires,” J. Colloid Interface Sci., 303(2), pp. 611–616. [CrossRef] [PubMed]
Kuang, Q., Lin, Z. W., Lian, W., Jiang, Z. Y., and Xie, Z. X., 2007, “Syntheses of Rare-Earth Metal Oxide Nanotubes by the Sol–Gel Method Assisted With Porous Anodic Aluminum Oxide Templates,” J. Solid. State Chem., 180(4), pp. 1236–1242. [CrossRef]
Hua, Z., Yang, S., Huang, H., Lv, L., Lu, M., Gu, B., and Du, Y., 2006, “Metal Nanotubes Prepared by a Sol–Gel Method Followed by a Hydrogen Reduction Procedure,” Nanotechnology, 17(20), pp. 5106–5110. [CrossRef]
Zhou, Z., Shen, C., and Li, H., 2002, “Synthesis of High-Ordered LiCoO2 Nanowire Arrays by AAO Template,” Solid State Ionics, 146(1–2), pp. 81–86. [CrossRef]
Ozturk, S., Tasaltin, N., Kilinc, N., and Ozturk, ZZ., 2009, “Fabrication of ZnO Nanotubes Using AAO Template and Sol–Gel Method,” J. Optoelectron. Biomed. Mater., 1(1), pp. 15–19.
Yang, Z., Huang, Y., Dong, B., Li, H. L., and Shi, S. Q., 2006, “Sol–Gel Template Synthesis and Characterization of LaCoO3 Nanowires,” Appl. Phys. A: Mater. Sci. Process., 84(1–2), pp. 117–122. [CrossRef]
Masuda, H., Nagae, M., Morikawa, T., and Nshio, K., 2006, “Long-Range-Ordered Anodic Porous Alumina With Reduced Hole Interval Formed in Highly Concentrated Sulfuric Acid Solution,” Jpn. J. Appl. Phys., 45(42–45), pp. 1165–1167. [CrossRef]
Zaraska, L., Sulka, G. D., and Jaskula, M., 2011, “Anodic Alumina Membranes With Defined Pore Diameters and Thicknesses Obtained by Adjusting the Anodizing Duration and Pore Opening/Widening Time,” J. Solid State Electrochem., 15(11–12), pp. 2427–2436. [CrossRef]
Lee, W., Ji, R., Gosele, U., and Nielsch, K., 2006, “Fast Fabrication of Long-Range Ordered Porous Alumina Membranes by Hard Anodization,” Nat. Mater., 5, pp. 741–747. [CrossRef] [PubMed]
Ono, S., Saito, M., Ishiguro, M., and Asoh, H., 2004, “Controlling Factor of Self-Ordering of Anodic Porous Alumina Corrosion, Passivation, and Anodic Films,” J. Electrochem. Soc., 151(8), pp. 473–478. [CrossRef]
Belwalkar, A., Grasing, E., Geertruyden, W. V., Huang, Z., and Misiolek, W. Z., 2008, “Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes,” J. Membr. Sci., 319(1–2), pp. 192–198. [CrossRef]
Cui, J., Wu, Y., Wang, Y., Zheng, H., Xu, G., and Zhang, X., 2012, “A Facile and Efficient Approach for Pore-Opening Detection of Anodic Aluminum Oxide Membranes,” Appl. Surf. Sci., 258(14), pp. 5305–5311. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of fabricating the AAO: (a) a first step anodization, (b) wet etching of AAO fabricated in a first step anodization, (c) a second step anodization, (d) extending the pores, (e) sputtering Au film, (f) dissolving aluminium substrate, and (g) dissolving barrier layer and extending pores

Grahic Jump Location
Fig. 2

Schematic of characterization of Cu NSF: (a) electric measurement and (b) bonding strength measurement

Grahic Jump Location
Fig. 3

Image of aluminum foil after a second anodization step: (a) SEM image in the top view, (b) AFM image, (c) cross sections of AFM image: line A, (d) cross sections of AFM image: line B, and (e) SEM image in the cross view

Grahic Jump Location
Fig. 4

SEM images of Cu nanowires after the etching: (a) 40 nm, (b) 60 nm, and (c) 80 nm

Grahic Jump Location
Fig. 5

Results of electric and strength measurement: (a) relationship between voltage and current and (b) relationship between bonding strength and diameter of nanowire

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In