0
Research Papers

HDPE Matrix Composites Filled With Ca4La6(SiO4)4(PO4)2O2 for Microwave Substrate Applications

[+] Author and Article Information
Dhanesh Thomas

Materials Science and Technology Division,
National Institute for Interdisciplinary Science and Technology,
CSIR,
Trivandrum 695019, India;
Department of Physics,
Government College,
Kasaragod 671123, India

Mailadil T. Sebastian

Materials Science and Technology Division,
National Institute for Interdisciplinary Science and Technology,
CSIR,
Trivandrum 695019, India
e-mail: mailadils@yahoo.com

1Corresponding author.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received September 27, 2012; final manuscript received March 4, 2014; published online May 5, 2014. Assoc. Editor: Kaustubh Nagarkar.

J. Electron. Packag 136(3), 031002 (May 05, 2014) (5 pages) Paper No: EP-12-1085; doi: 10.1115/1.4027089 History: Received September 27, 2012; Revised March 04, 2014

Polymer–ceramic composites have been prepared by dispersing Ca4La6(SiO4)4(PO4)2O2 (CLSP) ceramic filler in high density polyethylene (HDPE) matrix through melt mixing. Scanning electron micrographs reveal the extent of filler dispersion. The dielectric properties at 1 MHz and 5 GHz have been investigated as a function of filler content. The relative permittivity increases with filler loading, maintaining a low dielectric loss. The composite with highest filler loading of 0.4 volume fraction shows a relative permittivity of 5.1 and dielectric loss of 2.3 × 10−3 at 5 GHz. Experimentally observed values of relative permittivity at 5 GHz have been compared with the values calculated using various theoretical models. Both the coefficient of linear thermal expansion and tensile strength have been observed to decrease with filler loading, reaching a minimum value of 117 ppm/ °C and 20.7 MPa, respectively, at 0.4 volume fraction of filler. The composite with maximum filler loading of 0.4 volume fraction shows the highest thermal conductivity (TC) and is 1.2 W m−1 K−1.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bhattacharya, S. K., and Tummala, R. R., 2001, “Integral Passives for Next Generation of Electronic Packaging: Application of Epoxy/Ceramic Nanocomposites as Integral Capacitors,” Microelectron. J., 32(1), pp. 11–19. [CrossRef]
Wersing, W., and Dernovsek, O., 2004, “Multilayer Ceramic Technology,” Ceramic Materials for Electronics, R. C.Buchanan, ed., Marcel Dekker, Inc., New York, pp. 581–642.
Sebastian, M. T., and Jantunen, H., 2010, “Polymer-Ceramic Composites of 0-3 Connectivity for Circuits in Electronics: A Review,” Int. J. Appl. Ceram. Technol., 7(4), pp. 415–434. [CrossRef]
Rimdusit, S., and Ishida, H., 2000, “Development of New Class of Electronic Packaging Materials Based on Ternary Systems of Benzoxazine, Epoxy, and Phenolic Resins,” Polymer, 41(22), pp. 7941–7949. [CrossRef]
Anjana, P. S., Deepu, V., Uma, S., Mohanan, P., Philip, J., and Sebastian, M. T., 2010, “Dielectric, Thermal, and Mechanical Properties of CeO2-Filled HDPE Composites for Microwave Substrate Applications,” J. Polym. Sci., Part B: Polym. Phys., 48(9), pp. 998–1008. [CrossRef]
Murali, K. P., Rajesh, S., Prakash, O., Kulkarni, A. R., and Ratheesh, R., 2009, “Preparation and Properties of Silica Filled PTFE Flexible Laminates for Microwave Circuit Applications,” Composites, Part A, 40(8), pp. 1179–1185. [CrossRef]
Thomas, S., Deepu, V., Uma, S., Mohanan, P., Philip, J., and Sebastian, M. T., 2009, “Preparation, Characterization and Properties of Sm2Si2O7 Loaded Polymer Composites for Microelectronic Applications,” Mater. Sci. Eng. B, 163(2), pp. 67–75. [CrossRef]
Subodh, G., Deepu, V., Mohanan, P., and Sebastian, M. T., 2009, “Dielectric Response of High Permittivity Polymer Ceramic Composite With Low Loss Tangent,” Appl. Phys. Lett., 95(6), p. 062903. [CrossRef]
George, S., Deepu, V. N., Mohanan, P., and Sebastian, M. T., 2010, “Influence of Ca[(Li1/3Nb2/3)0.8Ti0.2]O3-δ Filler on the Microwave Dielectric Properties of Polyethylene and Polystyrene for Microelectronic Applications,” Polym. Eng. Sci., 50(3), pp. 570–576. [CrossRef]
George, S., Anjana, P. S., Sebastian, M. T., Krupka, J., Uma, S., and Philip, J., 2010, “Dielectric, Mechanical, and Thermal Properties of Low-Permittivity Polymer–Ceramic Composites for Microelectronic Applications,” Int. J. Appl. Ceram. Technol., 7(4), 461–474. [CrossRef]
Joseph, T., Uma, S., Philip, J., and Sebastian, M. T., 2012, “Dielectric, Thermal and Mechanical Properties of Sr2ZnSi2O7 Based Polymer/Ceramic Composites,” J. Mater. Sci.: Mater. Electron., 23(6), pp. 1243–1254. [CrossRef]
Manu, K. M., Soni, S., Murthy, V. R. K., and Sebastian, M. T., 2013, “Ba(Zn1/3Ta2/3)O3 Ceramics Reinforced High Density Polyethylene for Microwave Applications,” J. Mater. Sci.: Mater. Electron., 24(6), pp. 2098–2105. [CrossRef]
Manu, K. M., Ananthakumar, S., and Sebastian, M. T., 2013, “Electrical and Thermal Properties of Low Permittivity Sr2Al2SiO7 Ceramic Filled HDPE Composites,” Ceram. Int., 39(5), pp. 4945–4951. [CrossRef]
Thomas, D., and Sebastian, M. T., 2011, “Microwave Dielectric Properties of Ca2+xLa8-x(SiO4)6-x(PO4)xO2 Solid Solution,” J. Am. Ceram. Soc., 94(8), pp. 2276–2278. [CrossRef]
Zhou, W., Qi, S., An, Q., Zhao, H., and Liu, N., 2007, “Thermal Conductivity of Boron Nitride Reinforced Polyethylene Composites,” Mater. Res. Bull., 42(10), pp. 1863–1873. [CrossRef]
Thomas, D., Abhilash, P., and Sebastian, M. T., 2013, “Effect of Isovalent Substitutions on the Microwave Dielectric Properties of Ca4La6(SiO4)4(PO4)2O2 Apatite,” J. Alloys Compd., 546, pp. 72–76. [CrossRef]
Sebastian, M. T., 2008, Dielectric Materials for Wireless Communication, Elseiver, Oxford, UK.
Xu, J., Moon, K.-S., Tison, C., and Wong, C. P., 2006, “A Novel Aluminum-Filled Composite Dielectric for Embedded Passive Applications,” IEEE Trans. Adv. Packag., 29(2), pp. 295–306. [CrossRef]
Field, R. F., 1946, “The Formation of Ionized Water Films on Dielectrics Under Conditions of High Humidity,” J. Appl. Phys., 17(5), pp. 318–325. [CrossRef]
Tinga, W. R., Voss, W. A. G., and Blossey, D. F., 1973, “Generalized Approach to Multiphase Dielectric Mixture Theory,” J. Appl. Phys., 44(9), pp. 3897–3902. [CrossRef]
Bur, A. J., 1985, “Dielectric Properties of Polymers at Microwave Frequencies: A Review,” Polymer, 26(7), pp. 963–977. [CrossRef]
Steeman, P. A. M., Maurer, F. H. J., and van Es, M. A., 1991, “Dielectric Monitoring of Water Absorption in Glass-Bead-Filled High-Density Polyethylene,” Polymer, 32(3), pp. 523–530. [CrossRef]
Xiang, F., Wang, H., and Yao, X., 2006, “Preparation and Dielectric Properties of Bismuth-Based Dielectric/PTFE Microwave Composites,” J. Eur. Ceram. Soc., 26(10–11), pp. 1999–2002. [CrossRef]
Amagai, M., 2002, “Mechanical Reliability in Electronic Packaging,” Microelectron. Reliab., 42(4–5), pp. 607–627. [CrossRef]
Rajesh, S., Nisa, V. S., Murali, K. P., and Ratheesh, R., 2009, “Microwave Dielectric Properties of PTFE/Rutile Nanocomposites,” J. Alloys Compd., 477(1–2), pp. 677–682. [CrossRef]
Gemant, A., 1938, “The Role of Solid Friction in Synthetic Dielectrics,” J. Appl. Phys., 9(11), pp. 730–734. [CrossRef]
Curtis, A. J., 1962, “Dielectric Loss in ‘Nonpolar’ Polymers,” J. Chem. Phys., 36(12), pp. 3500–3501. [CrossRef]
Conklin, G. E., 1964, “Reduction of Dielectric Loss in Polyethylene,” J. Appl. Phys., 35(11), pp. 3228–3235. [CrossRef]
Todd, M. G., and Shi, F. G., 2003, “Molecular Basis of the Interphase Dielectric Properties of Microelectronic and Optoelectronic Packaging Materials,” IEEE Trans. Compon. Packag. Technol., 26(3), pp. 667–672. [CrossRef]
Mallet, P., Guérin, C. A., and Sentenac, A., 2005, “Maxwell–Garnett Mixing Rule in the Presence of Multiple Scattering: Derivation and Accuracy,” Phys. Rev. B: Condens. Matter, 72(1), p. 014205. [CrossRef]
Goncharenko, A. V., Lozovski, V. Z., and Venger, E. F., 2000, “Lichtenecker's Equation: Applicability and Limitations,” Opt. Commun., 174(1–4), pp. 19–32. [CrossRef]
Jayasundere, N., and Smith, B. V., 1993, “Dielectric–Constant for Binary Piezoelectric 0-3 Composites,” J. Appl. Phys., 73(5), pp. 2462–2466. [CrossRef]
Rao, Y., Qu, J., Marinis, T., and Wong, C. P., 2000, “A Precise Numerical Prediction of Effective Dielectric Constant for Polymer-Ceramic Composite Based on Effective-Medium Theory,” IEEE Trans. Compon. Packag. Technol., 23(4), pp. 680–683. [CrossRef]
Cannillo, V., Bondioli, F., Lusvarghi, L., Montorsi, M., Avella, M., Errico, M. E., and Malinconico, M., 2006, “Modeling of Ceramic Particles Filled Polymer-Matrix Nanocomposites,” Compos. Sci. Technol., 66(7–8), pp. 1030–1037. [CrossRef]
Rao, V., Ashokan, P. V., and Shridhar, M. H., 2000, “Studies of Dielectric Relaxation and AC Conductivity in Cellulose Acetate Hydrogen Phthalate–Poly(Methyl Methacrylate) Blends,” Mater. Sci. Eng. A, 281(1–2), pp. 213–220. [CrossRef]
Ahmed, H. M., and Aziz, S.-A. B., 2008, “Dielectric Properties of Commercial Non-Polar Polymers,” J. Zankoy Sulaimani Part A, 11(1), available at: www.univsul.org/Bilawkirawekan_U/page_1-8.pdf
Raghava, R. S., 1988, “Thermal Expansion of Organic and Inorganic Matrix Composites: A Review of Theoretical and Experimental Studies,” Polym. Compos., 9(1), pp. 1–11. [CrossRef]
Holliday, L., and Robinson, D., 1973, “Review: The Thermal Expansion of Composites Based on Polymers,” J. Mater. Sci., 8(3), pp. 301–311. [CrossRef]
Rusu, M., Sofian, N., and Rusu, D., 2001, “Mechanical and Thermal Properties of Zinc Powder Filled High Density Polyethylene Composites,” Polym. Test., 20(4), pp. 409–417. [CrossRef]
Herrmann, K. P., and Oshmyan, V. G., 2002, “Theoretical Study of Formation of Pores in Elastic Solids: Particulate Composites, Rubber Toughened Polymers, Crazing,” Int. J. Solids Struct., 39(11), pp. 3079–3104. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Powder XRD pattern and SEM image (in the inset) of CLSP filler

Grahic Jump Location
Fig. 2

SEM images of fractured surfaces of (a) HDPE-0.2 Vf CLSP and (b) HDPE-0.4 Vf CLSP

Grahic Jump Location
Fig. 3

Dependence of microwave dielectric properties on filler concentration

Grahic Jump Location
Fig. 4

Comparison of theoretical and experimental values of εr at 5 GHz

Grahic Jump Location
Fig. 5

Temperature variation of εr at 1 MHz

Grahic Jump Location
Fig. 6

Variation of linear CTE and TC with filler loading

Grahic Jump Location
Fig. 7

Tensile strength as a function of filler concentration

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In