0
Research Papers

Promising Technology for Electronic Cooling: Nanofluidic Micro Pulsating Heat Pipes

[+] Author and Article Information
Mohammad Behshad Shafii

e-mail: Behshad@sharif.edu

Zahra Shiee

Center of Excellence in Energy Conversion (CEEC),
School of Mechanical Engineering,
Sharif University of Technology,
P.O. Box 11155-9567, Tehran, Iran

1Corresponding author.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received July 13, 2012; final manuscript received January 21, 2013; published online March 28, 2013. Assoc. Editor: Siddharth Bhopte.

J. Electron. Packag 135(2), 021005 (Mar 28, 2013) (9 pages) Paper No: EP-12-1070; doi: 10.1115/1.4023847 History: Received July 13, 2012; Revised January 21, 2013

Currently, the thermal management of microelectromechanical systems (MEMS) has become a challenge. In the present research, a micro pulsating heat pipe (MPHP) with a hydraulic diameter of 508 μm, is experimented. The thermal performance of the MPHP in both the transient and steady conditions, the effects of the working fluid (water, silver nanofluid, and ferrofluid), heating power (4, 8, 12, 16, 20, 24, and 28 W), charging ratio (20, 40, 60, and 80%), inclination angle (0 deg, 25 deg, 45 deg, 75 deg, and 90 deg relative to horizontal axis), and the application of magnetic field, are investigated and thoroughly discussed. The experimental results show that the optimum charging ratio for water is 40%, while this optimum for nanofluids is 60%. In most of situations, the nanofluid charged MPHPs have a lower thermal resistance relative to the water charged ones. For ferrofluid charged MPHP, the application of a magnetic field substantially reduces the thermal resistance. This study proposes an outstanding technique for the thermal management of electronics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ma, H. B., Wilson, C., Yu, Q., Park, K., Choi, U. S., and Tirumala, M., 2006, “An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe,” ASME J. Heat Transfer, 128(11), pp. 1213–1216. [CrossRef]
Small, E., Sadeghipour, S. M., and Asheghi, M., 2006, “Heat Sinks With Enhanced Heat Transfer Capability for Electronic Cooling Applications,” ASME J. Electron. Packag., 128(3), pp. 285–290. [CrossRef]
Kenny, T. W., Goodson, K. E., Santiago, J. G., Wang, E. N., Koo, J. M., Jiang, L., Pop, E., Sinha, S., Zhang, L., Fogg, D., Yao, S., Flynn, R., Cheng, C. H., and Hidrovo, C. H., 2005, “Advanced Cooling Technologies for Microprocessors,” Int. J. High Speed Electron. Syst., 16(1), pp. 301–313. [CrossRef]
Li, P. and Liu, J., 2011, “Self-Driven Electronic Cooling Based on Thermosyphon Effect of Room Temperature Liquid Metal,” ASME J. Electron. Packag., 133(4), p. 041009. [CrossRef]
Tseng, Y.-S., Hung, T.-C., and Pei, B.-S., 2008, “Enhancement of Cooling Characteristics for Electronic Cooling by Modifying Substrate Under Natural Convection,” ASME J. Electron. Packag., 130(1), p. 011006. [CrossRef]
Mohammadi, N., Mohammadi, M., and Shafii, M. B., 2012, “A Review of Nanofluidic Pulsating Heat Pipes: Suitable Choices for Thermal Management of Electronics,” Front. Heat Pipes, 3(3), p. 033001. [CrossRef]
Chu, R. C., 2004, “The Challenges of Electronic Cooling: Past, Current and Future,” ASME J. Electron. Packag., 126(4), pp. 491–500. [CrossRef]
Dhillon, N. S., Pisano, A. P., Hogue, C., and Hopcroft, M. A., 2008, “MLHP—A High Heat Flux Localized Cooling Technology for Electronic Substrates,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE), Boston, MA, November 2–6, pp. 621–630.
Grimes, R., Davies, M., Punch, J., Dalton, T., and Cole, R., 2001, “Modeling Electronic Cooling Axial Fan Flows,” ASME J. Electron. Packag., 123(2), pp. 112–119. [CrossRef]
Agonafer, D. and Vimba, A., 1997, “Solid Model Based Preprocessor to CFD Code for Applications to Electronic Cooling Systems,” ASME J. Electron. Packag., 119(2), pp. 138–143. [CrossRef]
Cotter, T. P., 1984, “Principles and Prospects of Micro-Heat Pipes,” Proceedings of the 5th International Heat Pipe Conference, Tsukuba, Japan.
Sobhan, C. B., Rag, R. L., and Peterson, G. P., 2007, “A Review and Comparative Study of the Investigations on Micro Heat Pipes,” Int. J. Energy Res., 31(6–7), pp. 664–688. [CrossRef]
Qu, J., Wu, H. Y., and Wang, Q., 2012, “Experimental Investigation of Silicon-Based Micro-Pulsating Heat Pipe for Cooling Electronics,” Nanoscale Microscale Thermophys. Eng., 16(1), pp. 37–49. [CrossRef]
Akachi, H., 1990, “Structure of a Heat Pipe,” U.S. Patent No. 4921041.
Shafii, M. B., Faghri, A., and Zhang, Y., 2002, “Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes,” Int. J. Numer. Methods Heat Fluid Flow, 12(5), pp. 585–609. [CrossRef]
Zuo, Z. J., North, M. T., and Wert, K. L., 2001, “High Heat Flux Heat Pipe Mechanism for Cooling of Electronics,” IEEE Trans. Compon. Packag. Technol., 24(2), pp. 220–225. [CrossRef]
Shafii, M. B., Faghri, A., and Zhang, Y., 2001, “Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes,” ASME J. Heat Transfer, 123(6), pp. 1159–1172. [CrossRef]
Rittidech, S., Terdtoon, P., Murakami, M., Kamonpet, P., and Jompakdee, W., 2003, “Correlation to Predict Heat Transfer Characteristics of a Closed-End Oscillating Heat Pipe at Normal Operating Condition,” Appl. Therm. Eng., 23(4), pp. 497–510. [CrossRef]
Charoensawan, P., Khandekar, S., Groll, M., and Terdtoon, P., 2003, “Closed Loop Pulsating Heat Pipes Part A: Parametric Experimental Investigations,” Appl. Therm. Eng., 23(16), pp. 2009–2020. [CrossRef]
Buongiorno, J., Venerus, D., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., Tolmachev, Y. V., Keblinski, P., Hu, L.-W., Alvarado, J. L., Bang, I. C., Bishnoi, S. W., Bonetti, M., Botz, F., Cecere, A., Chang, Y., Chen, G., Chen, H., Chung, S. J., Chyu, M. K., Das, S. K., Di Paola, R., Ding, Y., Dubois, F., Dzido, G., Eapen, J., Escher, W., Funfschilling, D., Galand, Q., Gao, J., Gharagozloo, P. E., Goodson, K. E., Gutierrez, J. G., Hong, H., Horton, M., Hwang, K. S., Iorio, C. S., Jang, S. P., Jarzebski, A. B., Jiang, Y., Jin, L., Kabelac, S., Kamath, A., Kedzierski, M. A., Kieng, L. G., Kim, C., Kim, J.-H., Kim, S., Lee, S. H., Leong, K. C., Manna, I., Michel, B., Ni, R., Patel, H. E., Philip, J., Poulikakos, D., Reynaud, C., Savino, R., Singh, P. K., Song, P., Sundararajan, T., Timofeeva, E., Tritcak, T., Turanov, A. N., Van Vaerenbergh, S., Wen, D., Witharana, S., Yang, C., Yeh, W.-H., Zhao, X.-Z., and Zhou, S. Q., 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” Appl. Phys., 106(9), p. 094312. [CrossRef]
Li, Q., Xuan, Y., and Wang, J., 2005, “Experimental Investigations on Transport Properties of Magnetic Fluids,” Exp. Therm. Fluid Sci., 30(2), pp. 109–116. [CrossRef]
Wang, S., Lin, Z., Zhang, W., and Chen, J., 2009, “Experimental Study on Pulsating Heat Pipe With Functional Thermal Fluids,” Int. J. Heat Mass Transfer, 52(21–22), pp. 5276–5279. [CrossRef]
Mohammadi, M., Mohammadi, M., and Shafii, M. B., 2012, “Experimental Investigation of a Pulsating Heat Pipe Using Ferrofluid (Magnetic Nanofluid),” ASME J. Heat Transfer, 134(1), p. 014504. [CrossRef]
Qu, J. and Wu, H. Y., 2010, “Flow Visualization of Silicon-Based Micro Pulsating Heat Pipes,” Sci. China, Ser. E: Technol. Sci., 53(4), pp. 984–990. [CrossRef]
Youn, Y. and Kim, S., 2011, “Development of a Compact Micro Pulsating Heat Pipe,” Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference (AJTEC2011), Honolulu, HI, March 13–17.
Berger, P., Adelman, N. B., Beckman, K. J., Campbell, D. J., Ellis, A. B., and Lisensky, G. C., 1999, “Preparation and Properties of an Aqueous Ferrofluid,” Chem. Educ., 76(7), pp. 943–948. [CrossRef]
Holman, J. P., 2001, Experimental Methods for Engineers, 7th ed., McGraw-Hill, New York.
Khandekar, S., 2004, “Thermo-Hydrodynamics of Closed Loop Pulsating Heat Pipes,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
Choi, S. U. S., 1995, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66, D. A.Siginer and, H. P.Wang. eds., American Society of Mechanical Engineers (ASME), New York, pp. 99–105.
Qu, J., Wu, H. Y., and Cheng, P., 2010, “Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids,” Int. Commun. Heat Mass Transfer, 37(2), pp. 111–115. [CrossRef]
Paul, G., Sarkar, S., Pal, T., Das, P. K., and Manna, I., 2012, “Concentration and Size Dependence of Nano-Silver Dispersed Water Based Nanofluids,” J. Colloid Interface Sci., 371(1), pp. 20–27. [CrossRef] [PubMed]
Lotfi, H. and Shafii, M. B., 2009, “Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid,” Int. J. Therm. Sci., 48(12), pp. 2215–2220. [CrossRef]
Lajvardi, M., Moghimi-Rad, J., Hadi, I., Gavili, A., Dallali Isfahani, T., Zabihi, F., Sabbaghzadeh, J., 2010, “Experimental Investigation for Enhanced Ferrofluid Heat Transfer Under Magnetic Field Effect,” J. Magn. Magn. Mater., 322(21), pp. 3508–3513. [CrossRef]
Qu, J. and Wu, H., 2012, “Silicon-Based Micro Pulsating Heat Pipe for Cooling Electronics,” Adv. Mater. Res., 403–408, pp. 4260–4265 [CrossRef].
Misale, M., Devia, F., and Garibaldi, P., 2012, “Experiments With Al2O3 Nanofluid in a Single-Phase Natural Circulation Mini-Loop: Preliminary Results,” Appl. Therm. Eng., 40, pp. 64–70. [CrossRef]
Nguyen, C. T., Roy, G., Gauthier, C., and Galanis, N., 2007, “Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System,” Appl. Therm. Eng., 27(8–9), pp. 1501–1506. [CrossRef]
Selvakumar, P. and Suresh, S., 2012, “Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink,” Exp. Therm. Fluid Sci., 40, pp. 57–63. [CrossRef]
Ijam, A., Saidur, R., and Ganesan, P., 2012, “Cooling of Minichannel Heat Sink Using Nanofluids,” Int. Commun. Heat Mass Transfer, 39(8), pp. 1188–1194. [CrossRef]
Putra, N., Septiadi, W. N., Rahman, H., and Irwansyah, R., 2012, “Thermal Performance of Screen Mesh Wick Heat Pipes With Nanofluids,” Exp. Therm. Fluid Sci., 40, pp. 10–17. [CrossRef]
Putra, N., Yanuar, and Iskandar, F. N., 2011, “Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment,” Exp. Therm. Fluid Sci., 35(7), pp. 1274–1281. [CrossRef]
Ma, H. B., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., Choi, S. U. S., and Tirumala, M., 2006, “Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe,” Appl. Phys. Lett., 88(14), P. 143116. [CrossRef]
Seon Ahn, H. and Hwan Kim, M., 2012, “A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification,” ASME J. Heat Transfer, 134(2), p. 024001. [CrossRef]
Kwark, S. M., Moreno, G., Kumar, R., Moon, H., and You, S. M., 2010, “Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water,” Int. J. Heat Mass Transfer, 53(21–22), pp. 4579–4587. [CrossRef]
Moghadam, M. E., Shafii, M. B., and Dehkordi, E. A., 2009, “Hydromagnetic Micropump and Flow Controller. Part A: Experiments With Nickel Particles Added to the Water,” Exp. Therm. Fluid Sci., 33(6), pp. 1021–1028. [CrossRef]
Belikov, V. G. and Kuregyan, A. G., 2001, “Generation and Medicobiological Application of Magnetic Fields and Carriers (Review),” Pharm. Chem., 35(2), pp. 88–95. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Photograph of the MPHP

Grahic Jump Location
Fig. 2

Schematic diagram of the experimental setup

Grahic Jump Location
Fig. 3

TEM image of the nanoparticles of the ferrofluid

Grahic Jump Location
Fig. 4

Transient thermal performance of the MPHPs

Grahic Jump Location
Fig. 5

Thermal resistance versus heating power for the 20% charging ratio in the vertical heating mode

Grahic Jump Location
Fig. 6

Thermal resistance as a function of the heat input for the 40% charging ratio in the vertical heating mode

Grahic Jump Location
Fig. 7

Effects of the heating power on the thermal resistance for the 60% charging ratio in the vertical heating mode

Grahic Jump Location
Fig. 8

Thermal resistance versus heating power for the 80% charging ratio in the vertical heating mode

Grahic Jump Location
Fig. 9

Thermal resistance versus heating power for the 20% charging ratio in the horizontal heating mode

Grahic Jump Location
Fig. 10

Thermal resistance versus charging ratio for water as the working fluid

Grahic Jump Location
Fig. 11

Thermal resistance as a function of the charging ratio for the silver nanofluid

Grahic Jump Location
Fig. 12

Effects of the charging ratio on thermal resistance for the case of the ferrofluid as the working fluid

Grahic Jump Location
Fig. 13

Thermal resistance as a function of the inclination angle for various working fluids

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In