Recently, silicon nitride has been receiving renewed attention because of its potential use as a substrate material for packaging of silicon carbide (SiC) power devices for high temperature applications. It is an attractive material for this application because it has moderate thermal conductivity and a low coefficient of thermal expansion, which is close to that of SiC. Materials that show promise for use as a diffusion barrier on substrate for bonding SiC devices to a substrate are refractory metals such as titanium (Ti), molybdenum (Mo), tungsten (W), and their alloys. Tungsten carbide (WC) shows promise as a diffusion barrier for bonding these devices to copper metallization on substrates. This paper presents the results of an investigation of a metallization stack used to bond SiC dice to substrates. The dice were bonded using transient liquid phase bonding. Samples were characterized using X-ray diffraction for phase identification and Auger electron spectroscopy for depth profiling of the elemental composition of the metallization stack in the as-deposited state, and immediately following annealing. The metallization remained stable following subjection to a temperature of for 100 h in air.