Frost & Sullivan, 2001, “North American Infrared Sensors Market.”
Smith, B., and Amon, C., 2003, “Design of a Low-Cost Infrared Sensor Array Through Thermal System Modeling,” presented at the "Proceedings of IPACK03: International Electronic Packaging Technical Conference and Expo", Maui, HI.
Evans, T., Sun, S., Ruffner, J., and Clem, P., 2000, “Aerogel Isloated Pyroelectric IR Detector,” "Proceedings of ISAF: The International Symposium on the Applications of Ferroelectrics", pp. 221–226.
Smith, B., and Amon, C., 2003, “Effect of Sub-Continuum Energy Transport on Effective Thermal Conductivity in Nanoporous Silica (Aerogel),” presented at the "Proceedings of IMECE’03: 2003 ASME International Mechanical Engineering Conference and R&D Expo", Washington, DC.
Ploss, B., and Bauer, S., 1991, “Characterization of Materials for Integrated Pyroelectric Sensors,” Sens. Actuators, A, 25–27 , pp. 407–411.
Setiadi, D., Regtien, P., and Sarro, P., 1995, “Realization of an Integrated VDF/TrFE Copolymer-on-Silicon Pyroelectric Sensor,” Microelectron. Eng.
[CrossRef], 29 , pp. 85–88.
Neumann, N., and Koehler, R., 1993, “Application of Pyroelectric P(VDF/TrFE) Thin Films in Integrated Sensors and Arrays,” Proc. SPIE
[CrossRef], 2021 , pp. 35–44.
Jerominek, H., Pope, T., Alain, C., and Zhang, R., 1998, “128×128Pixel Uncooled Bolometric FPA for IR Detection and Imaging,” Proc. SPIE
[CrossRef], 3436 , pp. 585–592.
Kulwicki, B., Amin, A., Beratan, H., and Hanson, C., 1992, “Pyroelectric Imaging,” presented at the "Proceedings of the Eighth International Symposium on Applications of Ferroelectrics", Greenville, SC.
Whatmore, R., 1986, “Pyroelectric Devices and Materials,” Rep. Prog. Phys.
[CrossRef], 49 (12), pp. 1335–1386.
Whatmore, R., and Watton, R., 2001, "Pyroelectric Materials and Devices: Infrared Detectors and Emmitters: Materials and Devices", 1st ed., Kluwer Academic, Boston, MA.
Glass, A., 1969, “Investigation of the Electrical Properties of Sr1−xBaxNb2O6 With Special Reference to Pyroelectric Detection,” J. Appl. Phys.
[CrossRef], 40 , pp. 4699–4713.
Garn, L., and Sharp, E., 1982, “Use of Low-Frequency Sinusoidal Temperature Waves to Separate Pyroelectric Currents From Nonpyroelectric Currents. Part II. Experiment,” J. Appl. Phys.
[CrossRef], 53 , pp. 8980–8987.
Dias, C., Simon, M., Quad, R., and Das-Gupta, D., 1993, “Measurement of the Pyroelectric Coefficient in Composites Using a Temperature-Modulated Excitation,” J. Phys. D
[CrossRef], 26 , pp. 106–110.
Ploss, B., and Domig, A., 1994, “Static and Dynamic Properties of PVDF,” Ferroelectrics, 159 , pp. 263–268.
Lang, S., 1989, “Technique for the Measurement of Thermal Diffusivity Based on the Laser Intensity Modulation Method (LIMM),” Ferroelectrics, 93 , pp. 87–93.
Flik, M., Choi, B. I., and Goodson, K., 1992, “Heat Transfer Regimes in Microstructures,” ASME J. Heat Transfer, 114 , pp. 666–674.
Lang, S., 2004, “Laser Intensity Modulation Method (LIMM): Review of Fundamentals and a New Method for Data Analysis,” IEEE Trans. Dielectr. Electr. Insul.
[CrossRef], 11 (1), pp. 3–12.
Pollock, H., and Hammiche, A., 2001, “Microthermal Analysis: Techniques and Applications,” J. Phys. D
[CrossRef], 34 , pp. R23–R53.
Cahill, D., 1990, “Thermal Conductivity Measurement From 30to750K: The 3-Omega Method,” Rev. Sci. Instrum.
[CrossRef], 61 (2), pp. 802–808.
Kim, J., Feldman, A., and Novotny, D., 1999, “Application of the Three Omega Thermal Conductivity Measurement Method to a Film on a Substrate of Finite Thickness,” J. Appl. Phys.
[CrossRef], 86 (7), pp. 3959–3963.
Jacquot, A., Lenior, B., Daucher, A., Stozer, M., and Meusel, J., 2002, “Numerical Simulation of the 3-Omega Method for Measuring the Thermal Conductivity,” J. Appl. Phys.
[CrossRef], 91 (7), pp. 4733–4738.
Incropera, F., and DeWitt, D., 2001, "Fundamentals of Heat and Mass Transfer", 5th ed., Wiley, Hoboken, NJ.
Lang, S., and Das-Gupta, D., 1986, “Laser-Intensity-Modulation Method: A Technique for Determination of Spatial Distributions of Polarization and Space Charge in Polymer Electrets,” J. Appl. Phys.
[CrossRef], 59 (6), pp. 2151–2160.
Borca-Tasciuc, T., Kumar, A., and Chen, G., 2001, “Data Reduction in 3-Omega Method for Thin-Film Thermal Conductivity Determination,” Rev. Sci. Instrum.
[CrossRef], 72 (4), pp. 2139–2147.
Olson, B., Graham, S., and Chen, K., 2005, “A Practical Extension of the 3-Omega Method to Multilayer Structures,” Rev. Sci. Instrum.
[CrossRef], 76 , p. 053901.
Raudzis, C., Schatz, F., and Wharam, D., 2003, “Extending the 3-Omega Method for Thin-Film Analysis to High Frequencies,” J. Appl. Phys.
[CrossRef], 93 (10), pp. 6050–6055.
Lu, L., Yi, W., and Zhang, D., 2001, “3-Omega Method for Specific Heat and Thermal Conductivity Measurements,” Rev. Sci. Instrum.
[CrossRef], 72 (7), pp. 2996–3003.
Borca-Tasciuc, D., and Chen, G., 2005, “Anisotropic Thermal Properties of Nanochanneled Alumina Templates,” J. Appl. Phys.
[CrossRef], 97 , p. 084303.
Tsui, B., Yang, C., and Fang, K., 2004, “Anisotropic Thermal Conductivity of Nanoporous Silica Film,” IEEE Trans. Electron Devices
[CrossRef], 51 (1), pp. 20–27.
DeFrutos, J., and Jimenez, B., 1990, “Study of the Spatial Distribution of the Polarization in Ferroelectric Ceramics by Means of Low Frequency Sinusoidal Thermal Waves,” Ferroelectrics, 109 , pp. 101–106.
Boue, C., Alquie, C., and Fournier, D., 1997, “High Spatial Resolution of Permanent Polarization Distributions in Ferroelectric Samples Using a Combination of PWP and LIMM Measurements,” Ferroelectrics
[CrossRef], 193 , pp. 175–188.
Bauer, S., and Ploss, B., 1991, “Polarization Distribution of Thermally Poled PVDF Films Measured With a Heat Wave Method (LIMM),” Ferroelectrics, 118 , pp. 363–378.