Finite Thickness Influence on Spherical and Conical Indentation on Viscoelastic Thin Polymer Film

[+] Author and Article Information
V. Gonda, L. J. Ernst

Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands

J. den Toonder

Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA, Eindhoven, the Netherlands

J. Beijer, G. Q. Zhang

Philips CFT, P.O. Box 218, 5600 MD, Eindhoven, the Netherlands

J. Electron. Packag 127(1), 33-37 (Mar 21, 2005) (5 pages) doi:10.1115/1.1846065 History: Received January 07, 2004; Revised August 18, 2004; Online March 21, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Sneddon,  I. N., 1965, Int. J. Eng. Sci., 3, pp. 47–57.
Shull,  K. R., 2002, “Contact Mechanics and the Adhesion of Soft Solids,” Mater. Sci. Eng., R., 36, pp. 1–45.
Chudoba,  T., Schwarzer,  N., and Richter,  F., 1999, “New Possibilities of Mechanical Surface Characterization,” Thin Solid Films, 355, 356, pp. 284–289.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge.
Fischer-Cripps, A. C., 2000, Introduction to Contact Mechanics, Springer, Berlin.
Fischer-Cripps, A. C., 2002, Nanoindentation, Springer, Berlin.
Ting,  T. C. T., 1966, J. Appl. Mech., 33, pp. 845–854.
Sakai,  M., and Shimizu,  S., 2001, “Indentation Rheometry for Glass-Forming Materials,” J. Non-Cryst. Solids, 282, pp. 236–247.
Bradshaw,  R. D., and Brinson,  L. C., 1997, “A Sign Control Method for Fitting and Interconverting Material Functions for Linearly Visco-elastic Solids,” Mech. Time-Depend. Mater., 1, pp. 85–108.
Toonder, J. M. J. den, Dijken, A. R. van, Gonda, V., Beijer, J. G. J., Zhang, G. Q., Waeterloos, J., and Ernst, L. J., 2003, “Mechanical Characterization and Modeling of Low-Dielectric-Constant SiLK films Using Nano-Indentation: Time-and Temperature-Effects,” Proc. ECTC2003, pp. 708–713.
Gonda, V., Toonder, J. den, Beijer, J., Zhang, G. Q., and Ernst, L. J., 2003, “Prediction of Thermo-Mechanical Integrity of Wafer Backend Processes,” Proc. EuroSime 2003, L. J. Ernst et al., eds., pp. 359–363.


Grahic Jump Location
Hertzian and non-Hertzian indentation
Grahic Jump Location
Finite element model for conical indentation
Grahic Jump Location
Normalized conical indentation curves with different modulus ratios
Grahic Jump Location
Conical indentation curves related to the Hertzian solution
Grahic Jump Location
Normalized spherical indentation curves with different radius to thickness ratios
Grahic Jump Location
Spherical indentation curves related to the Hertzian solution
Grahic Jump Location
Simulated indentation curves in a modulus range of 1–3 GPa. R=19.5 μm,hf=8 μm.
Grahic Jump Location
Relaxation modulus (interconverted) at indentation-creep test on 6 μm SiLK at room temperature with different creep loads. R=21.5 μm.
Grahic Jump Location
Measured and simulated indentation-creep curves at indentation load 5 mN for elevated temperatures. R=21.5 μm,hf=6 μm,P0=5 mN.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In