0
TECHNICAL PAPERS

Numerical Simulation of Delamination in IC Packages Using a New Variable-Order Singular Boundary Element

[+] Author and Article Information
A. A. O. Tay, K. H. Lee, K. M. Lim

Centre for IC Failure Analysis and Reliability, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576

J. Electron. Packag 125(4), 569-575 (Dec 15, 2003) (7 pages) doi:10.1115/1.1604803 History: Received November 01, 2002; Online December 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

van Doorselaer,  K., and de Zeeuw,  K., 1990, “Relation Between Delamination and Temperature Cycling Induced Failures in Plastic Packaged Devices,” IEEE Trans. Compon., Hybrids, Manuf. Technol., Vol. 13, pp. 879–882.
van Vroonhoven,  J. C. W., 1993, “Effects of Adhesion and Delamination on Stress Singularities in Plastic-Packaged Integrated Circuits,” ASME J. Electron. Packag., Vol. 115, pp. 28–33.
Hattori,  T., Sakata,  S., Hatsuda,  T., and Murakami,  G., 1988, “A Stress Singularity Parameter Approach for Evaluating Adhesive Strength,” JSME Int. J., Ser. I, Vol. 31, pp. 718–723.
Tay, A. A. O., Tan, G. L., and Lim, T. B., 1993, “A Criterion for Predicting Delamination in Plastic IC Packages,” IEEE International Reliability Physics Symposium, Atlanta, pp. 236–243.
Tay,  A. A. O., Tan,  G. L., and Lim,  T. B., 1994, “Predicting Delamination in Plastic IC Packages and Determining Suitable Mold Compound Properties,” IEEE Trans. Compon., Packag. Manuf. Technol., Part B, Vol. 17, pp. 186–193.
Sakata,  S., Hattori,  T., and Hatsuda,  T., 1988, “Bonding Strength Evaluation of a Metal-Resin Adhering Interface Formed by Resin Molding,” JSME Int. J., Ser. I, Vol. 31, pp. 569–574.
Brebbia, C. A., and Dominguez, J., 1989, Boundary Elements—An Introductory Course, McGraw-Hill Book Co., New York.
Becker, A. A., 1992, The Boundary Element Method in Engineering, McGraw-Hill, London.
Henshell,  R. D., and Shaw,  K. G., 1975, “Crack Tip Finite Elements are Unnecessary,” Int. J. Numer. Methods Eng., Vol. 9, pp. 495–507.
Barsoum,  R. S., 1976, “On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics,” Int. J. Numer. Methods Eng., Vol. 10, pp. 25–37.
Blandford,  G. E., Ingraffea,  A. R., and Liggett,  J. A., 1981, “Two Dimensional Stress Intensity Factor Computations using the Boundary Element Method,” Int. J. Numer. Methods Eng., Vol. 17, pp. 387–404.
Martinez,  J., and Dominguez,  J., 1984, “On the Use of Quarter-Point Boundary Elements for Stress Intensity Factor Computations,” Int. J. Numer. Methods Eng., Vol. 20, pp. 1941–1950.
Tan,  C. L., and Gao,  Y. L., 1990, “Treatment of Bimaterial Interface Crack Problems using the Boundary Element Method,” Eng. Fract. Mech., Vol. 36, pp. 919–932.
Benzley,  S. E., 1974, “Representation of Singularities with IsoParametric Finite Elements,” Int. J. Numer. Methods Eng., Vol. 8, pp. 537–545.
Fawkes,  A. J., Owen,  D. R. J., and Luxmoore,  A. R., 1979, “An Assessment of Crack Tip Singularity Models for Use with Isoparametric Elements,” Eng. Fract. Mech., Vol. 11, pp. 143–159.
Tong,  P., Pian,  T. H. H., and Lasry,  S. J., 1973, “A Hybrid-Element Approach to Crack Problems in Plane Elasticity,” Int. J. Numer. Methods Eng., Vol. 7, pp. 297–308.
Jia,  Z. H., Shippy,  D. J., and Rizzo,  F. J., 1988, “On the Computation of Two-Dimensional Stress Intensity Factors using the Boundary Element Method,” Int. J. Numer. Methods Eng., Vol. 26, pp. 2739–2753.
Rezayat,  M., Rizzo,  F. J., and Shippy,  D. J., 1984, “A Unified Boundary Integral Equation Method for a Class of Second Order Elliptic Boundary Value Problems,” J. Aust. Math. Soc. B, Appl. Math., Vol. 25, pp. 501–517.
Walker,  S. P., and Fenner,  R. T., 1989, “Treatment of Corners in BIE Analysis of Potential Problems,” Int. J. Numer. Methods Eng., Vol. 28, pp. 2569–2581.
Rice,  J. R., 1988, “Elastic Fracture Mechanics Concepts for Interfacial Cracks,” J. Appl. Mech., Vol. 55, pp. 98–103.
Shih,  C. F., 1991, “Cracks on Bimaterial Interfaces: Elasticity and Plasticity Aspects,” Mater. Sci. Eng., A, Vol. A143, pp. 77–90.
Choo, H. C., 1993, “An Effective Transformation Scheme for Nearly Singular Integrals in Two-Dimensional Boundary Element Analysis,” M.Eng. thesis, The National University of Singapore.
Lim, K. M., 1995, “Development of a Variable-Order Singular Boundary Element with Application to IC Package Analysis,” M.Eng. thesis, The National University of Singapore.
Cruse, T. A., and Wilson, R. B., 1977, “Boundary Integral Equation Method for Elastic Fracture Mechanics Analysis,” AFOSR-TR-78-0355 Report.
Gao,  Y. L., and Tan,  C. L., 1992, “Determination of Characterizing Parameters for Bimaterial Interface Cracks using the Boundary Element Method,” Eng. Fract. Mech., Vol. 41, pp. 779–784.
Hu,  K. X., Yeh,  C. P., Wu,  X. S., and Wyatt,  K., 1996, “An Interfacial Delamination Analysis for Multichip Module Thin Film Interconnects,” ASME J. Electron. Packag., Vol. 118, pp. 206–213.
Theocaris,  P. S., 1974, “The Order of Singularity at a Multi-Wedge Corner of a Composite Plate,” Int. J. Eng. Sci., Vol. 12, pp. 107–120.
Lim,  K. M., Lee,  K. H., Tay,  A. A. O., and Zhou,  W., 2002, “A New Variable-Order Singular Boundary Element for Two-Dimensional Stress Analysis,” Int. J. Numer. Methods Eng., 55, pp. 293–316.
Wang,  J. S., and Suo,  Z., 1990, “Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut Sandwiches,” Acta Metall. Mater., Vol. 38, pp. 1279–1290.
Tay,  A. A. O., and Lin,  T. Y., 1999, “Influence of Temperature, Humidity and Defect Location on Delamination in Plastic IC Packages,” IEEE Trans. Compon. Packag. Manuf. Technol., Part A, 22, pp. 512–518.

Figures

Grahic Jump Location
The distance r between the source point P and the field point Q
Grahic Jump Location
Model of cross section of IC package
Grahic Jump Location
Energy release rate G (left crack tip) at different crack lengths and positions
Grahic Jump Location
Phase angle (left crack tip, r⁁=10 μm) at different crack lengths and positions
Grahic Jump Location
Energy release rate G (right crack tip) at different crack lengths and positions
Grahic Jump Location
Phase angle (right crack tip, r⁁=10 μm) at different crack lengths and positions
Grahic Jump Location
Energy release rate G (left crack tip) with right crack tip at 0, 20 μm from corner
Grahic Jump Location
Phase angle (left crack tip, r⁁=10 μm) with right crack tip at 0, 20 μm from corner
Grahic Jump Location
Possible delamination propagation behavior

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In