Finite Element Modelling of Flip Chip Gold-Gold Thermocompression Bonding

[+] Author and Article Information
J. Puigcorbé, S. Marco, S. Leseduarte, M. Carmona

Sistemes d’Instrumentació i Comunicacions, Departament d’Electrònica, Universitat de Barcelona, Martı́ i Franquès 1, 08028-Barcelona, Spain

O. Vendier, C. Devron

Alcatel Space Industries, 26 Avenue JF Champollion BP1187, 31037-Tolouse, France

S. L. Delage, D. Floriot

Thomson-CSF, Domaine de Corbeville, 91404 Orsay, France

H. Blanck

UMS GmbH, 11 Wilhem Runge Strasse, D-89081-Ulm, Germany

J. Electron. Packag 125(4), 549-555 (Dec 15, 2003) (7 pages) doi:10.1115/1.1604157 History: Received November 01, 2002; Online December 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Blanck, H., Delage, S. I., Cassette, S., Floriot, D., Chartier, E., diForte-Poisson, M. A., Watrin, E., and Bourne, P., 1996, “High Efficiency InGaP/GaAs HBT Power Amplifiers,” EDMO’96, Leeds, UK, 25–26 Nov., pp. 115–119.
Bahl,  S. R., Camnitz,  L. H., Houng,  D., and Mierzwinski,  M., 1996, “Reliability Investigation in InGaP/GaAs Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., 17, pp. 446–448.
Bayraktaroglu,  B., Barrette,  J., Kehias,  L.,, Huang,  C. I., Fitch,  R., Nidhard,  R., and Scherer,  R., 1993, “Very High-Power Density CW Operation of GaAs/AlGaAs Microwave Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., 14, pp. 493–495.
Hill,  D., Yarborough,  R., Kim,  T., and Chau,  H. F., 1997, “Low Thermal Impedance MMIC Technology,” IEEE Microw. Guid. Wave Lett., 7, pp. 36–38.
Hill,  D., Khatibzadeh,  A., Liu,  W., Kim,  T., and Ikalainen,  P., 1995, “Novel HBT with Reduced Thermal Impedance,” IEEE Microw. Guid. Wave Lett., 5, pp. 373–375.
Sato, H., Miyauchi, M., Sakuno, K., Akagi, M., Hasegawa, M., Twynam, J. K., Yamamura, K., and Tomita, T., 1993, “Bump Heat Sink Technology: A Novel Assembly Technology Suitable for Power HBTs,” IEEE GaAs IC Symp., pp. 337–340.
Ahmed,  N., and Svitak,  J. J., 1975, “Characterization of Gold-Gold Thermocompression Bonding,” Solid State Technol., Nov., PP. 25–32.
McGuire,  G. E., Jones,  J. V., and Dowell,  H. J., 1977, “The Auger Analysis of Contaminants that Influence the Thermocompression Bonding of Gold,” Thin Solid Films, 45, pp. 59–68.
Condra,  L. W., Svitak,  J. J., and Pense,  A. W., 1975, “The High Temperature Deformation Properties of Gold and Thermocompression Bonding,” IEEE Trans. Parts, Hybrids and Packaging, PHP-11, pp. 290–296.
Davies,  P. W., Denisson,  J. P., and Evans,  R. W., 1964, “The High-Temperature Creep and Fracture of Polycrystalline Gold,” J. Inst. Met., 92, pp. 409–412.
Takahashi,  Y., Inoue,  M., and Inoue,  K., 1999, “Numerical Analysis of Fine Lead Bonding Effect of Pad Thickness on Interfacial Deformation,” IEEE Trans. on Comp. Pack. Technol., 22, pp. 291–298.
Thouless,  M. D., Gupta,  J., and Harper,  J. M. E., 1993, “Stress Development and Relaxation in Copper Films During Thermal Cycling,” J. Mater. Res., 8, pp. 1845–1852.
Frost, H. J., and Ashby, M. F., 1982, Deformation-Mechanisms Maps, Pergamon Press, Oxford.
Hodge,  T. C., Bidstrup-Allen,  S. A., and Kohl,  P. A., 1997, “Stresses in Thin Film Metallizations,” IEEE Trans. Compon., Packag. Manuf. Technol., Part A, 20, pp. 241–250.
Lin,  J., Dunne,  F. P. E., and Hayhurst,  D. R., 1996, “Physically Based Temperature Dependence of Elastic-Viscoplastic Constitutive Equations for Copper Between 20 and 500°C,” Philos. Mag. A, 74, pp. 359–382.


Grahic Jump Location
Photography of a rectangular electroplated gold bump onto GaAs substrate
Grahic Jump Location
Evolution of temperature and pressure during the thermocompression. Detailed values in each case are detailed in Table 3.
Grahic Jump Location
FEM model for the thermal bump
Grahic Jump Location
Comparison between thermocompression results of 14 coupled node by node signal bumps and one equivalent bump with modified material properties. The agreement is quite good.
Grahic Jump Location
Activation energy against temperature obtained from literature data. Horizontal bars refer to the temperature range from which the activation energy is calculated.
Grahic Jump Location
Equivalent stress in MPa on the cross section thermal bump for simulated case 3
Grahic Jump Location
Evolution of the thermal bump height against time for the three analyzed cases. Because of the different height between thermal and signal bumps, compression is produced first on the thermal bump (parabolic part) and then on the thermal and on the 14 signal bumps (almost linear part).




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In