Modeling the Thermal Actuation in a Thermo-Pneumatic Micropump

[+] Author and Article Information
M. Carmona, S. Marco, J. Samitier

Sistemes d’Instrumentació i Communicació (SIC), Departament d’Electrònica, Facultat de Fı́sica, Universitat de Barcelona, C/Martı́ i Franquès 1, 08028 Barcelona, Spain

M. C. Acero, J. A. Plaza, J. Esteve

Centre Nacional de Microelectrònica, Campus UAB, 08193-Bellaterra, Spain

J. Electron. Packag 125(4), 527-530 (Dec 15, 2003) (4 pages) doi:10.1115/1.1604154 History: Received November 01, 2002; Online December 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Olsson, A., Enoksson, P., Stemme, E., and Stemme, G., 1995, “A Valve-less Planar Pump Isotropically Etched in Silicon,” MME’95, Ostrava, September, pp. 120–123.
Zengerle, R., Richter, A., and Sandmaier, H., 1992, “A Micro Membrane Pump with Electrostatic Actuation,” MEMS’92, Travemünde, February, pp. 19–24.
Van de Pol,  F. C. M., Wonnink,  D. G. J., Elwenspoek,  M., and Fluitman,  J. H. J., 1989, “A Thermo-Pneumatic Actuation Principle for a Microminiature Pump and Other Micromechanical Devices,” Sens. Actuators, 17, pp. 139–143.
Van de Pol,  F. C. M., Elwenspoek,  M., and Fluitman,  J. H. J., 1990, “A Thermopneumatic Micropump Based on Micro-Engineering Techniques,” Sens. Actuators A, A21–23, pp. 198–202.
Zengerle,  R., Geiger,  W., Richter,  M., Ulrich,  J., Kluge,  S., and Richter,  A., 1995, “Transient Measurements on Miniaturized Diaphragm Pumps in Microfluid Systems,” Sens. Actuators A, A46–47, pp. 557–561.
Carmona, M., 2000, “Modelización y Simulación de Microsistemas: Aplicación a Componentes de Microfluı́dica,” Ph.D. thesis, Universitat de Barcelona.
Acero,  M. C., Plaza,  J. A., Esteve,  J., Carmona,  M., Marco,  S., and Samitier,  J., 1997, “Design of a modular micropump based on anodic bonding,” J. Micromech. Microeng., 7, pp. 179–182.
Marco, S., Carmona, M., and Samitier, J., 1998, “Extraction of Dynamic HDL-A Models of Thermally Based Microsystems from Physical Simulations,” MSM’98, California, April, pp. 157–162.
Carmona, M., Marco, S., and Samitier, J., 2001, “Performance of a Thermo-Pneumatic Actuated Micropump: Influence of the Fluidic Components,” Benefiting from thermal and mechanical simulation in Micro-Electronics, EuroSimE’01, Europia, Paris, pp. 291–296.
Rencz, M., Székely, V., Kohári, Zs., Ress, S., and Poppe, A., 1999, “Thermal Evaluation of the SIP9 Package,” THERMINIC’99, Rome, October, pp. 111–116.
Goodson,  K. E., Flik,  M. I., Su,  L. T., and Antoniadis,  D. A., 1993, “Annealing Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide layers,” IEEE Electron Device Letters, 14, pp. 490–492.
Paul, O., von Arx, M., and Baltes, H., 1995, “Process-Dependent Thermophysical Properties of CMOS IC Thin Films,” in Digest of Technical Papers, Proceedings of the Transducers’95, Vol 1, Stockholm, June 25–29, pp. 178–181.
Carmona,  M., Marco,  S., Palacin,  J., and Samitier,  J., 1999, “A Time-Domain Method for the Analysis of Thermal Impedance Response Preserving the Convolution Form,” IEEE Transactions on Components and Packaging Technology, 22, 2, pp. 238–244.


Grahic Jump Location
Schematic section of the thermo-pneumatic actuated micropump
Grahic Jump Location
Comparison between simulation and experimental results of the dynamic maximum membrane displacement with the addition of a thermal resistance
Grahic Jump Location
Comparison of the dynamic response of the maximum membrane displacement for the lower time constant
Grahic Jump Location
Dynamic maximum membrane displacement obtained from thermal simulations with a power of 0.28 W
Grahic Jump Location
Comparison between the experimental mean temperature over the electrical resistance and the temperature obtained by FEM simulations
Grahic Jump Location
Displacement (in cm) of the membrane obtained by coupled thermo-mechanical simulation of a thermo-pneumatic actuation unit (power=180 mW)
Grahic Jump Location
Schematic lumped representation of the fluidic model of the micropump. Capacitance represents the deformable membrane and the valves are modeled as nonlinear resistances.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In