Stevens, J., and Webb, B. W., 1989, “Local Heat Transfer Coefficients Under an Axisymmetric, Single-phase Liquid Jet,” ASME HTD-Vol. 111, *Heat Transfer in Electronics*, pp. 113–119.

Womac, D. J., Aharoni, G., Ramadhyani, S., and Incropera, F. P., 1990, “Single-phase Liquid Jet Impingement Cooling of Small Heat Sources,” *Heat Transfer*, Proc., International Heat Transfer Conference, pp. 149–154.

Womac,
D. J., Ramadhyani,
S., and Incropera,
F. P., 1993, “Correlating Equations for Impingement Cooling of Small Heat Sources with Single Circular Liquid Jets,” ASME J. Heat Transfer, 115, pp. 106–115.

Womac,
D. J., Incropera,
F. P., and Ramadhyani,
S., 1994, “Correlating Equations for Impingement Cooling of Small Heat Sources with Multiple Circular Liquid Jets,” ASME J. Heat Transfer, 116, pp. 482–486.

Ma,
C. F., Gan,
Y. P., Tian,
Y. C., Lei,
D. H., and Gomi,
T., 1993, “Liquid Jet Impingement Heat Transfer with or without Boiling,” J. Thermal Science, 2(1), pp. 32–49.

Nonn, T., Dagan, Z., and Jiji, L. M., 1989, “Jet Impingement Flow Boiling of a Mixture of FC-72 and FC-87 Liquids on a Simulated Electronic Chip,” ASME HTD-Vol. 111, *Heat Transfer in Electronics*, pp. 121–128.

Wadsworth,
D. C., and Mudawar,
I., 1990, “Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid,” ASME J. Heat Transfer, 112, pp. 891–898.

Wadsworth,
D. C., and Mudawar,
I., 1992, “Enhancement of Single-phase Heat Transfer and Critical Heat Flux from an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid,” ASME J. Heat Transfer, 114, pp. 764–768.

Chrysler,
G. M., Chu,
R. C., and Simons,
R. E., 1994, “Jet Impingement Boiling of a Dielectric Coolant in Narrow Gaps,” IEEE Intersociety Conference on Thermal Phenomena, pp. 1–8.

Copeland,
D., 1998, “Single-phase and Boiling Cooling of a Small Heat Source by Multiple Nozzle Jet Impingement,” Int. J. Heat Mass Transf., 39(7), pp. 1395–1406.

Nakayama, W., and Copeland, D., 1994, “Heat Transfer from Chips to Dielectric Coolant: Enhanced Pool Boiling Versus Jet Impingement Cooling,” *Enhanced Heat Transfer*, 1 (3), pp. 231–243.

Garimella, S. V., and Rice, R. A., 1994, “Heat Transfer in Submerged and Confined Liquid Jet Impingement,” *Heat Transfer in High Heat Flux Systems*, ASME HTD-Vol. 301, pp. 59–68.

Garimella,
S. V., and Rice,
R. A., 1995, “Confined and Submerged Liquid Jet Impingement Heat Transfer,” ASME J. Heat Transfer, 117, pp. 871–877.

Sun,
H., Ma,
C. F., and Nakayama,
W., 1993, “Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets,” ASME J. Electron. Packag., 115, pp. 71–77.

Maddox,
D. E., and Bar-Cohen,
A., 1994, “Thermofluid Design of Single-phase Submerged-Jet Impingement Cooling for Electronic Components,” ASME J. Electron. Packag., 116, pp. 237–240.

Yao, S. C., Deb, S., and Hammouda, N., 1989, “Impact Spray Boiling for Thermal Control of Electronic Systems,” ASME HTD-Vol. 111, *Heat Transfer in Electronics*, pp. 129–133.

Mudawar, I., and Estes, K. A., 1995, “Comparison of Two-phase Electronic Cooling Using Free Jets and Sprays,” *Advances in Electronic Packaging*, Proc. Int. Electronic Packaging Conference, Vol. 2, pp. 975–987.

Oliphant,
K., Webb,
B. W., and McQuay,
M. Q., 1998, “An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-boiling Regime,” Exp. Therm. Fluid Sci., 18, pp. 1–10.

Narumanchi, S. V. J., Amon, C. H., and Murthy, J. Y., 2000, “Dielectric Jet Impingement Cooling of Electronic Chips,” Proc., 34th ASME National Heat Transfer Conference, Paper No. NHTC2000-12138.

Schafer,
D. M., Ramadhyani,
S., and Incropera,
F. P., 1992, “Numerical Simulation of Laminar Convection Heat Transfer from an In-line Array of Discrete Sources to a Confined Rectangular Jet,” Numer. Heat Transfer, Part A, 22, pp. 121–141.

Wang,
X. S., Dagan,
Z., and Jiji,
L. M., 1989, “Conjugate Heat Transfer Between a Laminar Impinging Liquid Jet and a Solid Disk,” Int. J. Heat Mass Transf., 32(11), pp. 2189–2197.

Rahman, M. M., and Bula, A. J., 1998, “Numerical Modeling of Conjugate Heat Transfer During Free Liquid Jet Impingement,” ASME AES-Vol. 38, pp. 475–486.

Rahman,
M. M., Bula,
A. J., and Leland,
J., 1999, “Conjugate Heat Transfer During Free Jet Impingement of a High Prandtl Number Fluid,” Numer. Heat Transfer, Part B, 36, pp. 139–162.

Fujimoto,
H., Hirohiko,
T., Hatta,
N., and Viskanta,
R., 1999, “Numerical Simulation of Transient Cooling of a Hot Solid by an Impinging Free Surface Jet,” Numer. Heat Transfer, Part A, 36, pp. 767–780.

Liu, X., and Lienhard, J. H., 1989, “Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface,” *Heat Transfer Phenomena in Radiation, Combustion and Fires*, ASME HTD-Vol. 106, pp. 523–530.

Liu,
X., Lienhard,
J. H., and Lombara,
J. S., 1991, “Convective Heat Transfer by Impingement of Circular Liquid Jets,” ASME J. Heat Transfer, 113, pp. 571–581.

Liu, X., Gabour, L. A., and Lienhard, J. H., 1992, “Stagnation Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis with Surface Tension Effects,” *General Papers in Heat Transfer*, ASME HTD-Vol. 204, pp. 173–181.

Zumbrunnen,
D. A., and Aziz,
M., 1993, “Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet,” ASME J. Heat Transfer, 115, pp. 91–98.

Sheriff,
H. S., and Zumbrunnen,
D. A., 1994, “Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet,” ASME J. Heat Transfer, 116, pp. 886–895.

Mladin,
E. C., and Zumbrunnen,
D. A., 1994, “Nonlinear Dynamics of Laminar Boundary Layers in Pulsatile Stagnation Flows,” J. Thermophys. Heat Transfer, 8(3), pp. 514–523.

Patera,
A. T., 1984, “A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion,” J. Comput. Phys., 54, pp. 468–488.

Amon,
C. H., 1993, “Spectral Element-Fourier Method for Transitional Flows in Complex Geometries,” AIAA J., 31(1), pp. 42–48.

Amon,
C. H., 1995, “Spectral Element-Fourier Method for Unsteady Conjugate Heat Transfer in Complex Geometry Flows,” J. Thermophys. Heat Transfer, 9(2), pp. 247–253.