0
TECHNICAL PAPERS

Stresses and Fracture at the Chip/Underfill Interface in Flip-Chip Assemblies

[+] Author and Article Information
Ji Eun Park

Lockheed Martin Aeronautics Company, Marietta, GA 30063-0915e-mail: ji.e.park@lmco.com

Iwona Jasiuk

The GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0405e-mail: iwona.jasiuk@me.gatech.edu

Alek Zubelewicz

Structure/Property Relations Group, Los Alamos National Laboratory, Los Alamos, NM 87545e-mail: alek@lanl.gov

J. Electron. Packag 125(1), 44-52 (Mar 14, 2003) (9 pages) doi:10.1115/1.1527656 History: Received December 20, 2001; Online March 14, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Timoshenko,  S. P., 1925, “Analysis of Bi-metal Thermostats,” J. Opt. Soc. Am., 11, pp. 233–255.
Suhir,  E., 1986, “Stresses in Bi-metal Thermostat,” ASME J. Appl. Mech., 53, pp. 657–660.
Suhir,  E., 1989, “Interfacial Stresses in Bi-material Thermostats,” ASME J. Appl. Mech., 56, pp. 595–600.
Kuo,  A. Y., 1989, “Thermal Stresses at the Edge of Bimetallic Thermostat,” ASME J. Appl. Mech., 56, pp. 585–589.
Lau,  J. H., 1989, “A note on the Calculation of Thermal Stresses in Electronic Packaging by Finite Element Methods,” ASME J. Electron. Packag., 111, pp. 313–320.
Williams,  M. L., 1959, “The Stress Around a Fault or Crack in Dissimilar Media,” Bull. Seismol. Soc. Am., 49, pp. 199–204.
England,  A. H., 1965, “A Crack Between Dissimilar Media,” ASME J. Appl. Mech., 32, pp. 400–402.
Erdogan,  F., 1965, “Stress Distribution in Bonded Dissimilar Materials With Cracks,” ASME J. Appl. Mech., 32, pp. 403–410.
Rice,  J. R., and Sih,  G. C., 1965, “Plane Problems of Cracks in Dissimilar Media,” ASME J. Appl. Mech., 32, pp. 418–423.
Bogy,  D. B., 1968, “Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading,” ASME J. Appl. Mech., 35, pp. 460–466.
Bogy,  D. B., 1970, “On the Problem of Edge-bonded Elastic Quarter Planes Loaded at the Boundary,” Int. J. Solids Struct., 6, pp. 1287–1313.
Bogy,  D. B., and Sternberg,  E., 1968, “The Effect of Couple-Stresses on Singularities Due to Discontinuous Loading,” Int. J. Solids Struct., 3, pp. 757–770.
Lee,  M., and Jasiuk,  I., 1991, “Asymptotic Expansions for the Thermal Stresses in Bonded Semi-Infinite Bi-material Strips,” ASME J. Electron. Packag., 113, pp. 173–177.
Jiang,  Z. Q., Huang,  Y., and Chandra,  A., 1997, “Thermal Stresses in Layered Electronic Assemblies,” ASME J. Electron. Packag., 119, pp. 127–132.
Suhir,  E., 1988, “An Approximate Analysis of Stresses in Multilayered Elastic Thin Films,” ASME J. Appl. Mech., 55, pp. 143–148.
Chen,  W. T., and Nelson,  C. W., 1979, “Thermal Stress in Bonded Joints,” IBM J. Res. Dev., 23, pp. 178–188.
Chen,  D., Cheng,  S., and Gerhart,  T. D., 1982, “Thermal Stresses in Laminated Beams,” J. Therm. Stresses, 23, pp. 67–84.
Pao,  Y. H., and Eisele,  E., 1991, “Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading,” ASME J. Electron. Packag., 113, pp. 164–172.
Yin,  W. L., 1994, “Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting: Part 1—A Stress-Function-Based Variational Approach,” ASME J. Appl. Mech., 61, pp. 410–415.
Yin,  W. L., 1994, “Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting: Part 2—Eigenfuntion Analysis and the Results for Symmetric Laminates,” ASME J. Appl. Mech., 61, pp. 416–421.
Yin,  W. L., 1995, “Interfacial Thermal Stresses in Layered Structures: the Stepped Edge Problem,” ASME J. Electron. Packag., 117, pp. 153–158.
Wang,  S. S., and Choi,  I., 1982, “Boundary-Layer Effects in Composite Laminates: Part 1—Free-Edge Stress Singularities,” ASME J. Appl. Mech., 49, pp. 541–548.
Wang,  S. S., and Choi,  I., 1982, “Boundary-Layer Effects in Composite Laminates: Part 2—Free-Edge Stress Solutions and Basic Characteristics,” ASME J. Appl. Mech., 49, pp. 549–560.
Webber,  J. P. H., and Morton,  S. K., 1993, “An Analytical Solution for the Thermal Stresses at the Free Edges of Laminated Plates,” Compos. Sci. Technol., 46, pp. 175–185.
Yao, Q., and Qu, J., 1999, “Effect of Thermal Residual Stresses on the Apparent Interfacial Fracture Toughness of Polymer/Metal Interface,” Proc., 49th Electronic Components and Technology Conference, San Diego, CA, pp. 365–368.
Yao, Q., and Qu, J., 1999, “Effect of Thermal Residual Stresses on the Apparent Interfacial Fracture Toughness of Epoxy/Aluminum Interface,” 5th Int. Symp. Advanced Packaging Materials, Chateau Elan, Braselton, pp. 333–336.
Peterson, D. W., Sweet, J. N., Burchett, S. N., and Hsia, A., 1997, “Stresses from Flip-Chip Assembly and Underfill; Measurements With ATC 4.1 Assembly Test Chip and Analysis by Finite Element Method,” Proc. 47th Electronic Components and Technology Conference, San Jose, CA, pp. 134–143.
Zhao, J. H., Dai, X., and Ho, P. S., 1998, “Analysis and Modeling Verification for Thermal-mechanical Deformation in Flip-Chip Packages,” Proc., 48th Electronic Components and Technology Conference, Seattle, WA, pp. 336–344.
Michaelides,  S., and Sitaraman,  S. K., 1999, “Die Cracking and Reliable Die Design for Flip-Chip Assemblies,” IEEE Trans. Adv. Packag., 22(4), pp. 602–613.
Hanna, C. E. and Sitaraman, S. K., 1999, “Role of Underfill Materials and Thermal Cycling on Die Stresses,” Proc., InterPACK 99, Hawaii, Vol. 26-1, pp. 795–801.
Xie,  W., and Sitaraman,  S. K., 2000, “Interfacial Thermal Stress Analysis of Anisotropic Multi-Layered Electronic Packaging Structures,” ASME J. Electron. Packag., 122, pp. 61–66.
Wang,  J., Lu,  M., Zou,  D., and Liu,  S., 1998, “Investigation of Interfacial Fracture Behavior of a Flip-Chip Package under a Constant Concentrated Load,” IEEE Trans. Compon., Packag. Manuf. Technol., Part B, 21(1), pp. 79–85.
Yan,  X., and Agarwal,  R. K., 1998, “Two Test Specimens for Determining the Interfacial Fracture Toughness in Flip-Chip Assemblies,” ASME J. Electron. Packag., 120, pp. 150–155.
Machuga, S. C., Lindsey, S. E., Moore, K. D. and Skipor, A. F., 1992, “Encapsulant of Flip-Chip Structures,” Proc., 1992 IEEE/CHMT International Electronic Manufacturing and Technology Symposium, Baltimore, MD, pp. 53–58.
Yeh,  C. P., Zhou,  W. X., and Wyatt,  K., 1996, “Parametric Finite-Element Analysis of Flip-Chip Structures,” Int. J. Microcircuits Electron. Packag., 19, pp. 120–127.
Hashin,  Z., and Shtrikman,  S., 1963, “A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials,” J. Mech. Phys. Solids, 11, pp. 127–140.
Budiansky,  B., 1965, “On the Elastic Moduli of Some Heterogeneous Materials,” J. Mech. Phys. Solids, 13, pp. 223–227.
Hill,  R., 1965, “A Self-consistent Mechanics of Composite Materials,” J. Mech. Phys. Solids, 13, pp. 21–222.
Mori, T., and Tanaka, K., 1973, “Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,” Acta Metall., 21 , pp. 571–574.
Benveniste,  Y., 1987, “A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials,” Mech. Mater., 6, pp. 147–157.
Christensen, R. M., 1991, Mechanics of Composite Materials, Krieger Publ. Co., Malabar, FL.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Martinus Nijhoff, Dordrecht.
Hashin,  Z., 1983, “Analysis of Composite Materials—A Survey,” ASME J. Appl. Mech., 50, pp. 481–505.
Qu, J., and Wong, C. P., 1998, “Effective Elastic Modulus of Underfill Material for Flip-Chip Applications,” Proc., 48th Electronic Components and Technology Conference, Seattle, WA, pp. 848–850.
Eshelby,  J. D., 1975, “The Elastic Energy-Momentum Tensor,” J. Elast., 5, pp. 321–35.
Rice,  J. R., 1968, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” ASME J. Appl. Mech., 35, pp. 379–386.
Smelser,  R. E., and Gurtin,  M. E., 1977, “On the J-integral for Bi-material Bodies,” Int. J. Fract., 13, pp. 382–384.
Park,  J. H., and Earmme,  Y. Y., 1986, “Application of Conservation Integrals to Interfacial Crack Problems,” Mech. Mater., 5, pp. 261–276.
Sun,  C. T., and Wu,  X. X., 1996, “On the J-integral in Periodically Layered Composites,” Int. J. Fract., 77, pp. 89–100.
Weichert,  D., and Schulz,  M., 1993, “J-Integral Concept for Multi-phase Materials,” Comput. Mater. Sci., 1, pp. 241–248.
Haddi,  A., and Weichert,  D., 1996, “On the Computation of the J-integral for Three-dimensional Geometries in Inhomogeneous Materials,” Comput. Mater. Sci., 5, pp. 143–150.
Haddi,  A., and Weichert,  D., 1997, “Elastic-plastic J-integral in Inhomogeneous Materials,” Comput. Mater. Sci., 8, pp. 251–260.
Lin,  T. Y., and Tay,  A. A. O., 1997, “A J-Integral Criterion for Delamination of Bi-Material Interfaces Incorporating Hydrothermal Stress,” Advances in Electronic Packaging, 2 , pp. 1421–1427.
Charalambides,  P. G., Lund,  J., Evans,  A. G., and McMeeking,  R. M., 1989, “A Test Specimen for Determining the Fracture Resistance of Bi-Material Interfaces,” ASME J. Appl. Mech., 56, pp. 77–82.
Hamoush,  S. A., and Ahmad,  S. H., 1989, “Mode I and Mode II Stress Intensity Factors for Interfacial Cracks in Bi-material Media,” Eng. Fract. Mech., 33, pp. 421–427.
Pao,  Y. H., and Pan,  T. Y., 1990, “Determination of Stress Intensity Factors for Interfacial Cracks in Bi-material Systems,” ASME J. Electron. Packag., 112, pp. 154–161.
Matos,  P. P. L., McMeeking,  R. M., Charalambides,  P. G., and Drory,  M. D., 1989, “A Method for Calculating Stress Intensities in Bi-material Fracture,” Int. J. Fract., 40, pp. 235–254.
ABAQUS, Version 5.6, 1995, Hibbit, Karlsson & Sorensen, Inc., USA.
Bogy,  D. B., and Wang,  K. C., 1971, “Stress Singularities at Interface Corners in Bonded Dissimilar Isotropic Elastic Materials,” Int. J. Solids Struct., 7, pp. 993–1005.
Gall, C. A., Qu, J. and McDowell, D. L., 1996, “Delamination Cracking in Encapsulanted Flip Chip,” Proc., 46th Electronic Components and Technology Conference, Orlando, FL, pp. 430–434.
Wu,  C. M. L., Lai,  J. K. L., and Wu,  Y., 1998, “Thermal-mechanical Interface Crack Behavior of a Surface Mount Solder Joint,” Finite Elem. Anal. Design, 30, pp. 19–30
Rice,  J. R., 1988, “Elastic Fracture Mechanics Concepts for Interfacial Cracks,” ASME J. Appl. Mech., 32, pp. 418–423.
Kanninen, M. F., and Popelar, C. H., 1985, Advanced Fracture Mechanics, Oxford University Press, New York, NY.
Park, J. E., Jasiuk, I., and Zubelewicz, A., 2003, “Micromechanics-Based Interfacial Stress Analysis and Fracture in Electronic Packaging Assemblies with Heterogeneous Underfill,” ASME J. Electron. Packag., accepted for publication.

Figures

Grahic Jump Location
Sketches of four different flip chip models—(a) bi-material strip, (b) three-layer case I (three layers with equal lengths), (c) three-layer case II (three layers with long substrate and a straight line of underfill edge), (d) three-layer case III (three layers with underfill fillet starting at the top of chip)
Grahic Jump Location
Finite element meshes of three different models—(a) bi-material strip, (b) three-layer case I (three layers with equal lengths), (c) three-layer case III (three layers with underfill fillet starting at the top of chip)
Grahic Jump Location
Effective properties of underfill versus volume fraction of particles in underfill—(a) effective Young’s modulus E*, (b) effective Poisson’s ratio ν*, (c) effective coefficient of thermal expansion (CTE) α*
Grahic Jump Location
The parameter λ versus volume fraction of particles in underfill for a bi-material strip with a straight edge (shown in Fig. 2(a))
Grahic Jump Location
Deformed shape of the three-layer model II with displacement magnification factor 15.4 (shown in Fig. 2(c))
Grahic Jump Location
Stresses at the chip/underfill interface for a bi-material strip with volume fraction of particles in underfill f=0.4—(a) interfacial normal stress, (b) interfacial shear stress
Grahic Jump Location
Stresses at the chip/underfill interface for a three-layer model with underfill fillet starting at the top of chip (three-layer case III) with volume fraction of particles in underfill f=0.4—(a) interfacial normal stress, (b) interfacial shear stress
Grahic Jump Location
Maximum interfacial stresses versus volume fraction of particles in underfill for bi-material strip and three-layer cases I, II, and III—(a) interfacial normal stress, (b) interfacial shear stress
Grahic Jump Location
The J-integral paths—(a) bi-material strip and three-layer case I and II, (b) three-layer case III
Grahic Jump Location
J-integral versus volume fraction of particles in underfill for four geometric models
Grahic Jump Location
Phase angle versus volume fraction of particles in underfill
Grahic Jump Location
Stress intensity factors K1,K2, and modulus |K| versus volume fraction of particles in underfill

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In