0
TECHNICAL PAPERS

Intrinsic Strain Modeling and Residual Stress Analysis for Thin-Film Processing of Layered Structures

[+] Author and Article Information
Mehrdad N. Ghasemi Nejhad, Chiling Pan, Hongwei Feng

Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822

J. Electron. Packag 125(1), 4-17 (Mar 14, 2003) (14 pages) doi:10.1115/1.1512295 History: Received September 01, 2000; Online March 14, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Eckertová, L., 1986, Physics of Thin Films, 2nd Ed., Plenum Press, New York and London, pp. 11–16.
Kim, E. S., 1990, “Integrated microphone with CMOS circuits on a single chip,” Ph.D. dissertation, EECS Dept., Univ. of California, Berkeley.
Ried,  R. P., Kim,  E. S., and Muller,  R. S., 1993, “Piezoelectric Microphone with On-Chip CMOS Circuits,” ASME-IEEE J. Microelectromechanical System,, 2, pp. 111–120.
Chen,  P. L., Muller,  R. S., Jolly,  R. D., Halac,  G. L., White,  R. M., Andrews,  A. P., Lim,  C. L., and Motamedi,  M. E., 1982, “Integrated Silicon Microbeam PI-PET Accelerometer,” IEEE Trans. Electron Devices, ED-29, pp. 27–33.
Chen,  P. L., Muller,  R. S., and Andrews,  A. P., 1984, “Integrated Silicon PI-PET acceleration with proof mass,” Sens. Actuators A, 5, pp. 119–126.
Bill, B., and Wicks, A. L., 1989, “Measuring simultaneously translational and angular acceleration with the new translational angular-piezobeam (TAP) system,” Abstract of Transducer’89, 5th Int. Conf. Solid State Sensors and Actuators and Actuators and Eurosensors III, June 25–30, Montreux, Switzerland, pp. 1229.
Moroney, R. M., White, R. M., and Howe, R. T., 1990, “Ultrasonic micromotors: physics and applications,” Proc. IEEE-MEMS, Napa Valley, CA, USA, pp. 182–187.
Lee,  S. S., and White,  R. M., 1996, “Self-excited piezoelectric cantilever oscillators,” Sens. Actuators A, A52, pp. 41–45.
Udayakumar, K. R., Bart, S. F., Flynn, A. M., Chen, J., Tavrow, L. S., Cross, L. E., Brooks, R. A., and Ehrlich, D. J., 1991, “Ferroelectric thin film ultrasonic micromotors,” Proc. IEEE-MEMS, Nara, Japan, pp. 109–113.
Racine, G. A., Luthier, R., and Rooij, N. F., de, 1993, “Hybrid ultrasonic micromachined motors,” Proc. IEEE-MEMS 93, Fort Lauderdale, FL. pp. 128–132.
Suhir,  E., 1988, “An Approximate Analysis of Stresses in Multilayered Elastic Thin Films,” ASME J. Appl. Mech., 55, pp. 143–148.
Phelan,  P. E., and Ghasemi Nejhad,  M. N., 1994, “Residual Stresses for In-Situ Deposition of Thin-Film High-Temperature Superconductors,” ASME J. Electron. Packag., 116, pp. 249–257.
Daniel,  I. M., Wang,  T. M., and Gotro,  J. T., 1990, “Thermomechanical Behavior of Multilayer Structures in Microelectronics,” ASME J. Electron. Packag., 112, pp. 11–15.
Agarwal, B. D., and Broutman, L. J., 1990, Analysis and Performance of Fiber Composites, 2nd eds., Wiley, New York, pp. 232–240.
Pourahmadi,  F., Barth,  P., and Petersen,  K., 1990, “Modeling of Thermal and Mechanical Stresses in Silicon Microstructures,” Sens. Actuators A, A21-A23, pp. 850–855.
Lin,  M. K., Abatan,  A. O., and Rogers,  C. A., 1994, “Application of Commercial Finite Element Codes for the Analysis of Induced Strain-Actuated Structures,” J. Intell. Mater. Syst. Struct., 5, pp. 869–875.
Bergqvist,  J., 1993, “Finite-Element Modeling and Characterization of a Silicon Condenser Microphone with a Highly Perforated Backplate,” Sens. Actuators A, 39, pp. 191–200.
Cifuentes,  A. O., and Shareef,  I. A., 1993, “Some Modeling Issues on the Finite Element Computation of Thermal Stresses in Metal Lines,” ASME J. Electron. Packag., 115, pp. 392–403.
Liateni,  K., Lee,  H. J., Maher,  M. A., and Karam,  J. M., 2000, “Moving from analysis to Design: A MEMS CAD Tool Evolution,” Design, Test, Integration, and Packaging of MEMS/MOEMS, B. Courtois, S. B. Crary, K. J. Gabriel, J. M. Karam, K. Markus, A. A. O. Tay, eds., Proc. SPIE, 4019, pp. 188–192.
Tan,  Z., Furmanczyk,  M., Turowski,  M., and Przekwas,  A., 2000, “CFD-Micromesh: A Fast Geometric Modeling and Mesh Generation Tool for 3-D Microsystem Simulations,” in Design, Test, Integration, and Packaging of MEMS/MOEMS, Courtois, B., Crary, S. B., Gabriel, K. J., Karam, J. M., Markus, K., Tay, A. A. O., eds., Proc. SPIE, 4019, pp. 193–199.
Kwak, B. M., Lee, S. H., and Huh, J. S., 2000, “A Robust and Versatile Software System for Optimal Design of MEMS Structures,” Design, Test, Integration, and Packaging of MEMS/MOEMS, Courtois, B., Crary, S. B., Gabriel, K. J., Karam, J. M., Markus, K., Tay, A. A. O., eds., Proceedings of SPIE Vol. 4019, pp. 200–209.
Affour, B., Nachtergaele, P., Spirkovitch, S., Ostergaard, D., and Gyimesi, M., 2000, “Efficient Reduced Order Modeling for System Simulation of Micro electro Mechanical Systems (MEMS) from FEM,” Design, Test, Integration, and Packaging of MEMS/MOEMS, B. Courtois, S. B. Crary, K. J. Gabriel, J. M. Karam, K. Markus, A. A. O. Tay, eds., Proceedings of SPIE Vol. 4019, pp. 50–54.
Gugliotta, A., Soma, A., and Mauro, S. D., 2000, “Non-linear analysis of beams under electrostatic loads,” in Design, Test, Integration, and Packaging of MEMS/MOEMS, B. Courtois, S. B. Crary, K. J. Gabriel, J. M. Karam, K. Markus, A. A. O. Tay, eds., Proc., SPIE, Vol. 4019, pp. 90–98.
Dumitrescu, M., Cobianu, C., and Pascu, A., 2000, “Evaluation of the Orientation of Thermal Deformation in the Surface Micromachined Membrane of the Gas Microsensors,” Design, Test, Integration, and Packaging of MEMS/MOEMS, B. Courtois, S. B. Crary, K. J. Gabriel, J. M. Karam, K. Markus, A. A. O. Tay, Editors, Proc., SPIE, Vol. 4019, pp. 299–304.
Puigcorbe,  J., Leseduarte,  S., Marco,  S., Beyne,  E., Hoof,  R. V., Marty,  A., Pinel,  S., Vendier,  O., and Coello-Vera,  A., 2000, “Residual Thermo-mechanical stresses in ultra thin chip stack technology,” in Design, Test, Integration, and Packaging of MEMS/MOEMS, B. Courtois, S. B. Crary, K. J. Gabriel, J. M. Karam, K. Markus, A. A. O. Tay, eds., Proc. SPIE, 4019, pp. 315–323.
Huja, M., and Husak, M., 2000, “MEMS structure-micromirror array,” in Design, Test, Integration, and Packaging of MEMS/MOEMS, B. Courtois, S. B. Crary, K. J. Gabriel, J. M. Karam, K. Markus, A. A. O. Tay, eds., Proc., SPIE, Vol. 4019, pp. 556–567.
Vinson, J. R., and Sierakowski, R. L., 1993, The Behavior of Structures Composed of Composite Materials, Kluwer Academic Publishers.
Cady, W. G., 1964, Piezoelectricity: An Introduction to the Theory and Applications of Electro-mechanical Phenomena in Crystals, Vol. 1, Dover, New York and London, pp. 11–16.
IEEE, 1987, “ANSI/IEEE Std 176-1987, IEEE Standard on Piezoelectricity,” IEEE, New York, pp. 13–15.
Hellwege, K. H., and Hellwege, A. M., 1979, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. III/11, Springer-Verlag, Berlin, pp. 87, 149.
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., 1977, Thermophysical Properties of Matter, Thermal Expansion-Nonmetallic Solids, Vol. 13, Plenum Publishing Corporation, New York, NY.
Bogetti,  T. A., and Gillespie,  J. W., 1992, “Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates,” J. Compos. Mater., 26, pp. 626–660.
Ghasemi Nejhad, M. N., Gillespie. J. W., Jr., and Cope, R. D., 1992, “Prediction of Process-Induced Stresses for In-Situ Thermoplastic Filament Winding of Cylinders,” Proc., Third International Conference CADCOMP’92, Computer Aided Design in Composite Material Technology, pp. 225–253.
Thompson,  C. V., and Carel,  R., 1996, “Stress and grain growth in thin films,” J. Mech. Phys. Solids, 44, No. 5, pp. 657–673.
Windischmann,  H., 1991, “Intrinsic stress in sputtered thin films,” J. Vac. Sci. Technol. A, 9, No. 4, pp. 2431–2436.
Miura,  H., Hideo,  H., Ohta,  N., Hiroyuki,  and Okamoto,  T., 1992, “Crystallization-induced stress in silicon thin films,” Appl. Phys. Lett., 60, No. 22.
Pagano, N. J., 1974, Mechanics of Composite Materials, Academic Press, New York.
Mallick, P. K., 1993, Fiber-Reinforced Composite: Materials, Manufacturing, and Design, Marcel Dekker, Inc., New York.
Jones, R. M., 1999, Mechanics of Composite Materials, 2nd Ed., Taylor & Francis, New York.
Till, D., 1995, Teach yourself PERL in 21 days, SAMS Publishing, Indianapolis, IN.
ANSYS, Inc., 1998, ANSYS User’s Manual, Revision 5.5, Canonsburg, PA.
Zeng, H., 2000, “Characterization of the Electromechanical Properties of Sputter-deposited ZnO Thin Films for MEMS Applications,” Ph.D. dissertation, Electrical Eng. Dept., Univ. of Hawaii at Manoa.
Pan, C., 1999, “Residual Stress Modeling and Static and Dynamic Analysis of Thin-Film Layered Structures,” Master thesis, Department of Mechanical Engineering, University of Hawaii.
Keiner, H., Von Preissig, F. J., Zeng, H., Ghasemi Nejhad, M. N., Kim, E. S., 1998, “Advanced Bulge Test System,” Materials Research Society Symp. Proc., Vol. 505, Thin-Films Stresses and Mechanical Properties VII, R. C. Cammarata, M. Natasi, E. P. Busso, and W. C. Oliver eds., (MRS, 1998) pp. 229–234.
Feng, H-W., 1997, “Residual Stress, Static and Dynamic Analysis for Piezoelectric Microelectromechanical Systems,” Master’s thesis, Department of Mechanical Engineering, University of Hawaii at Manoa.
Tabata,  O., Kawahata,  K., Sugiyama,  S., and Igarashi,  I., 1989, “Mechanical Property Measurements of Thin Film Using Load-Deflection of Composite Rectangular Membranes,” Sens. Actuators A, 20 (1-2), pp. 135–141.
Vlassak,  J. J., and Nix,  W. D., 1992, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” J. Mater. Res., 7(12), p. 3242.

Figures

Grahic Jump Location
Schematic model of the film/substrate system used in the analytical solution, showing the substrate to be divided into ns layers and the film in nf layers, where ns+nf=30, in the developed software
Grahic Jump Location
Flow chart for computing equivalent reference temperature (ERT)
Grahic Jump Location
Schematic of processing steps used in the software algorithm to calculate residual stresses using the ERT model
Grahic Jump Location
Flow chart for residual stress analysis using the ERT model
Grahic Jump Location
Two-layer model for 2-D FEA
Grahic Jump Location
Two-layer model for 3-D FEA
Grahic Jump Location
Three-layer model for 2-D FEA
Grahic Jump Location
Three-layer model for 3-D FEA
Grahic Jump Location
ANSYS finite element analysis output for residual stress analysis (3-D model)
Grahic Jump Location
Schematic of an advanced bulge test system 44

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In