0
TECHNICAL PAPERS

Die Attachment for −120°C to +20°C Thermal Cycling of Microelectronics for Future Mars Rovers—An Overview

[+] Author and Article Information
Randall K. Kirschman, Witold M. Sokolowski, Elizabeth A. Kolawa

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

J. Electron. Packag 123(2), 105-111 (Oct 20, 2000) (7 pages) doi:10.1115/1.1347996 History: Received October 20, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Daum,  W., Burdick,  W. E., and Fillion,  R. A., 1993, “Overlay High-Density Interconnect: a Chips-First Multichip Module Technology,” Computer, 26, No. 4, pp. 23–29.
Fillion,  R. A., Wojnarowski,  R. J., Gorcyzca,  T. B., Wildi,  E. J., and Cole,  H. S., 1995, “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” IEEE Trans. Compon., Packag. Manuf. Technol., Part B, 18, No. 1, pp. 59–65.
Kolawa, E., and Sokolowski, W., 1998, “Survivability Studies of Low-Temperature Electronics for Future Mars Rovers,” Internal JPL Presentation, 4 May.
Brandon, E., 1997, “Overview of Low-Temperature Electronics for Future Mars Rover Missions,” JPL Internal Report, 9 Sept.
Olsen,  D. R., and Berg,  H. M., 1979, “Properties of Die Bond Alloys Relating to Thermal Fatigue,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-2, No. 2, pp. 257–263.
Ainsworth,  P. A., 1971, “Formation and Properties of Soft Soldered Joints,” Metals Mater., 5, No. 11, pp. 374–379.
Jaffee,  R. I., Minarcik,  E. J., and Gonser,  B. W., 1948, “Low-Temperature Properties of Lead-Based Solders and Soldered Joints,” Metal Progress, 54, No. 6, pp. 843–845.
Jones, W. K., Liu, Y. Q., Zampino, M. A., and Gonzalez, G. L., 1996, “The At-Temperature Mechanical Properties of Lead-Tin Based Alloys,” Proc.—ISHM Int. Symposium on Microelectronics, Minneapolis, Minnesota, 8–10 Oct., pp. 322–327.
Jones, W. K., Liu, Y., Zampino, M. A., and Gonzalez, G., 1996, “Mechanical Properties of Pb-Sn-Ag Solders from −200°C to 150°C,” Second Int. Symposium on Electronic Packaging Technology, Shanghai, China, 9–12, Dec., pp. 235–240.
Jones,  W. K., Liu,  Y., Zampino,  M. A., and Gonzalez,  G., 1997, “The Mechanical Properties of Lead-Tin Based Solders in the Temperature Range from −200°C to 150°C,” Int. J. Microcircuits Electron. Packag., 20, No. 2, pp. 150–154.
Jones, W. K., Liu, Y., Zampino, M. A., Gonzalez, G., and Shah, M., 1997, “A Study on Mechanical Properties of Eutectic and Solid Solution Pb-Sn-Ag Solders from −200°C to 150°C,” Design and Reliability of Solders and Solder Interconnections, Mahidhara, R. K., Frear, D. R., Sastry, S. M. L., Murty, K. L., Liaw, P. K., and Winterbottom, W., eds., The Minerals, Metals & Materials Society, pp. 85–96.
Liu, Y., Jones, W. K., Zampino, M. A., and Gonzalez, G., 1996, “A Study on Fracture Mechanism of Two Types of Solder at Low Temperature,” Second Int. Symposium on Electronic Packaging Technology, Shanghai, China, 9–12 Dec., pp. 460–465.
Reichenecker, W. J., 1982, “Impact Properties of Some Bulk Solder Alloys in the Temperature Range −130°C to +150°C,” Westinghouse R&D Center Report 82-1D4-TAPOG-P1, 10 May.
Reichenecker, W. J., 1981, “Shear Strength of Some Solder Alloys at −130°C, Room Temperature and +150°C,” Westinghouse R&D Center Report 81-7D4-PHASL-P2, 30 Sept.
Reichenecker,  W. J., 1983, “Shear Strength of Solder Alloys,” Mech. Eng. (Am. Soc. Mech. Eng.), 97, No. 6, pp. 12–13.
Fast,  R. W., Craddock,  W. W., Kobayashi,  M., and Mruzek,  M. T., 1988, “Electrical and Mechanical Properties of Lead/Tin Solders and Splices for Superconducting Cables,” Cryogenics, 28, pp. 7–9.
Mruzek, M. T., 1980, “Properties and Methods of Lead/Tin Splices for Superconductors,” Fermilab Report, TM-994, 2701.000, Sept. 1980, 18 pp.
Nyilas, A., and Zhang, J., 1990, “4 K Tensile Measurements of Different Solder Alloys,” Kernforschungszentrum Karlsruhe (now Forschungszentrum Karlsruhe) Internal Report, Contract 5183/90 of Project EW-293607, Oct.
Plötner,  M., Donat,  B., and Benke,  A., 1991, “Deformation Properties of Indium-Based Solders at 294 and 77 K,” Cryogenics, 31, pp. 159–162.
Kalish,  H. S., and Dunkerley,  F. J., 1949, “The Low Temperature Properties of Tin and Tin-Lead Alloys,” Trans. Am. Inst. Min., Metall. Eng., 180, pp. 637–656.
MacIntosh, R. M., 1966, “Tin in Cold Service” Tin and its Uses, No. 72, pp. 7–10.
Firth, G. C., and Watkins, V. E. Jr., 1986, “An Interim Report on Investigation of Low Temperature Solders for Cryogenic Wind Tunnel Models,” Joining Technologies for the 1990s: Welding, Brazing, Soldering, Explosive, Solid-State, Adhesive, Buckley, J. D. and Stein, B. A., eds., Noyes Data Corp., NJ, pp. 20–33.
Hall, E. T. Jr., 1986, “NTF—Soldering Technology Development for Cryogenics,” Joining Technologies for the 1990s: Welding, Brazing. Soldering, Explosive, Solid-State, Adhesive, Buckley, J. D. and Stein, B. A., eds., Noyes Data Corp., NJ, pp. 34–51.
Yoshioka,  S., Tani,  S., Kumusawa,  M., and Inoue,  A., 1990, “Low Cycle Fatigue Properties of Solder Material (36Pb62Sn2Ag) at Low Temperatures,” J. Soc. Mater. Sci. Jpn., 39, No. 442, pp. 908–913 (in Japanese).
Tong, H. M., Mok, L., Grebe, K. R., Yeh, H. L., Srivastava, K. K., and Coffin, J. T., 1989, “Parylene Encapsulation of Ceramic Packages for Liquid Nitrogen Application,” Proc.—Int. Conference on Electronic Components and Materials, Beijing, China, 7–10 Nov.
Tong, H. M., Mok, L., Grebe, K. R., Yeh, H. L., Srivastava, K. K., and Coffin, J. T., 1990, “Parylene Encapsulation of Ceramic Packages for Liquid Nitrogen Application,” 1990 Proc.—40th Electronic Components and Technology Conference, Las Vegas, Nevada, 20–23 May, Vol. 1, pp. 345–350.
Tong,  H.-M., Mok,  L. S., Grebe,  K. R., Yeh,  H. L., Srivastava,  K. K., and Coffin,  J. T., 1993, “Effects of Parylene Coating on the Thermal Fatigue Life of Solder Joints in Ceramic Packages,” IEE Trans. Compon., Hybrids, Manuf. Technol., 16, No. 5, pp. 571–576.
Plötner, M., Sadowski, G., Rzepka, S., and Blasek, G., 1991, “Aspects of Indium Solder Bumping and Indium Bump Bonding Useful for Assembling Cooled Mosaic Sensors,” Hybrid Circuits, No. 25, pp. 27–30.
Hashimoto,  K., Ochiai,  M., Karasawa,  K., and Nakanishi,  T., 1991, “Flip-Chip Interconnection Technology for Packaging of VLSI Operated in Liquid Nitrogen,” IEICE Trans., E74, No. 8, pp. 2362–2368.
Hashimoto,  K., Nakanishi,  T., and Ochiai,  M., 1992, “Flip-Chip Connection Materials for Packaging of VLSIs Operating in Liquid Nitrogen,” Fujitsu Sci. Tech. J., 28, No. 3, pp. 301–309.
Yamamoto, H., 1991, “Multichip Module Packaging for Cryogenic Computers,” IEEE Int. Symposium on Circuits and Systems, Singapore, 4 , pp. 2296–2299.
Jones, W. K., Liu, Y. Q., and Shah, M., 1997, “Mechanical Properties of Sn-In and Pb-In Solders at Low Temperature,” Proc.—3rd Int. Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Braselton, Georgia, 9–12 Mar., pp. 64–67.
Yeh,  J. T. C., 1982, “Characterization of In-Based Eutectic Alloys Used in Josephson Packaging,” Metall. Trans. A, 13A, pp. 1547–1562.
Reed,  R. P., McCowan,  C. N., Delgado,  L. A., and McColskey,  J. D., 1988, “Tensile Strength and Ductility of Indium,” Mater. Sci. Eng. A, A102, pp. 227–236.
Reed, R. P., and Walsh, R. P., 1992, “Creep of Indium at Low Temperatures,” Advances in Cryogenic Engineering Materials, 38A , pp. 117–126; Proc.—Ninth Int. Cryogenic Materials Conf., Huntsville, AL, 11–14 June 1991.
Swenson,  C. A., 1955, “Properties of Indium and Thallium at Low Temperatures,” Phys. Rev., 100, No. 6, pp. 1607–1614.
Caulfield, T., Purushothaman, S., and Waldman, D. P., 1984, “Aging Response and Cryogenic Mechanical Properties of an In-Sn Eutectic Solder Alloy for Josephson Packaging,” Advances in Cryogenic Engineering Materials, 30 , pp. 311–318; Proc.—Fifth Int. Cryogenic Materials Conf., Colorado Springs, Colorado, 15–17 Aug. 1983.
Purushothaman,  S., and Caulfield,  T., 1984, “On the Differences in the Cryogenic Tensile Properties of the Constituent Phases in the In-Sn Eutectic Alloy,” Scr. Metall., 18, No. 2, pp. 183–184.
Yeh,  J. T. C., 1984, “Mechanical Properties of In-Based Eutectic Alloy Solders Used in Josephson Packaging,” Cryogenics, 24, pp. 261–265.
McNeil,  M. B., 1963, “The Properties of the Intermetallic Phases in the System Au-Sn,” J. Electrochem. Soc., 110, No. 11, pp. 1169–1170.
Matijasevic,  G. S., Wang,  C. Y., and Lee,  C. C., 1990, “Void Free Bonding of Large Silicon Dice Using Gold-Tin Alloys,” IEEE Trans. Compon., Hybrids, Manuf. Technol., 13, No. 4, pp. 1128–1134.
Matijasevic, G. S., Wang, C. Y., and Lee, C. C., 1990, “Extremely Reliable Bonding of Large Silicon Dice Using Gold-Tin Alloy,” 1990 Proc.—40th Electronic Components and Technology Conf., Las Vegas, Nevada, 1 , pp. 786–790.
Lee,  C. C., and Matijasevic,  G. S., 1989, “Highly Reliable Die Attachment on Polished GaAs Surfaces Using Gold-Tin Eutectic Alloy,” IEEE Trans. Compon. Hybrids, Manuf. Technol., 12, No. 3, pp. 406–409.
Matijasevic, G. S., and Lee, C. C., 1989, “A Reliability Study of Au-Sn Eutectic Bonding with GaAs Dice,” 27th Annual Proc.—Reliability Physics, 11–13 Apr., Phoenix, AZ, pp. 137–140.
Chen,  C.-L., Johnson,  R. W., Jaeger,  R. C., Cornelius,  M. B., and Foster,  W. A., 1990, “Packing Technology for a Low Temperature Astrometric Sensor Array,” IEEE Trans. Compon., Hybrids, and Manuf. Technol., 13, No. 4, pp. 1083–1089.
Goldfarb,  S., Tower,  J. R. , Bigler,  R. R., and Stein,  S. J., 1982, “Thick Film on Silicon for an Infrared Electro-Optical Array,” Proc.—ISHM Int. Microelectronics Symposium, Reno, Nevada, 15–17 Nov.; Int. J. Hybrid Microelectron., 5, No. 2, pp. 158–162.
Goldfarb, S., Bigler, R. R., and Strong, R. T., 1985, “Thick Film Hybrid Application to Cryogenic Infrared Imaging Arrays,” Proc.—ISHM Int. Symposium on Microelectronics, Anaheim, California, 11–14 Nov., pp. 162–167.
Ulrich, R., and Rajan, S., 1993, “Immersion Cooling of Wirebonded Chips in Liquid Nitrogen for Superconducting MCM’s,” Proc.—1993 Int. Electronics Packaging Conference, San Diego, CA, 12–15 Sept., pp. 82–89.
Ulrich,  R. K., and Rajan,  S., 1995, “Substrate Temperatures of Liquid Nitrogen Cooled Multichip Modules Utilizing Wirebonded Die,” IEEE Trans. Compon., Packag. Manuf. Technol., Part A, 18, No. 4, pp. 827–834.
Ulrich,  R. K., and Rajan,  S. T., 1996, “Thermal Performance of an MCM Flip-Chip Assembly in Liquid Nitrogen,” IEEE Trans. Compon., Packag. Manuf. Technol., Part A, 19, No. 4, pp. 451–457.
Ulrich, R., and Rajan, S., 1996, “Temperature Profiles for MCM-D Flip-Chip Assemblies at Cryogenic Conditions,” Twelfth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Austin, Texas, 5–7 Mar., pp. 30–35.
Touloukian et al., eds., 1975 and 1977, Thermophysical Properties of Matter, Vols. 12 and 13, “Thermal Expansion.”
Tong,  H.-M., Yeh,  H. L., Goldblatt,  R. D., Srivastava,  K. K., Coffin,  J. T., Rosenberg,  W. D., and Jaspal,  J. S., 1989, “Ceramic Packages for Liquid-Nitrogen Operation,” IEEE Trans. Electron Devices, 36, No. 8, pp. 1521–1526.
Fujiwara,  K., Asahi,  M., Tsurumi,  S., and Takeuchi,  Y., 1987, “Water-Soluble Flux for Pb-Alloy Josephson Device Packaging,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-10, No. 2, pp. 258–262.
Ting,  C. Y., Grebe,  K., and Waldman,  D., 1982, “Controlled Collapse Reflow for Josephson Chip Bonding,” J. Electrochem. Soc., 129, No. 4, pp. 859–864.
Chen, C.-L., Johnson, R. W., Jaeger, R. C., Cornelius, M. B., and Foster, W. A., 1990, “Multichip Thin-Film Technology for Low Temperature Packaging,” Proc—40th Electronic Components and Technology Conference, Las Vegas, Nevada, 20–23 May, 1 , pp. 571–579.
Lee,  C. C., Wang,  C. Y., and Matijasevic,  G. S., 1991, “A New Bonding Technology Using Gold and Tin Multilayer Composite Structures,” IEEE Trans. Compon., Hybrids, Manuf. Technol., 14, No. 2, pp. 407–411.
Matijasevic,  G. S., and Lee,  C. C., 1989, “Void-Free Au-Sn Eutectic Bonding of GaAs Dice and Its Characterization Using Scanning Acoustic Microscopy,” J. Electron. Mater., 18, No. 2, pp. 327–337.
Aoki,  S., Imanaka,  Y., Yokouchi,  K., and Kamehara,  N., 1992, “Multilayer Ceramic Substrate for HEMT Packaging (Liquid Nitrogen Packaging for GaAs Devices),” Int. J. Microcircuits Electron. Packag., 15, No. 3, pp. 160–170.
Aoki,  S., Imanaka,  Y., and Yokouchi,  K., 1992, “Multilayer Ceramic Substrate for HEMT Packaging (Liquid Nitrogen Packaging for GaAs Devices),” Fujitsu Sci. Tech. J., 28, No. 3, pp. 321–328.

Figures

Grahic Jump Location
Coefficient of thermal expansion (CTE) for four materials used in microelectronics: silicon (Si), gallium arsenide (GaAs), alumina (polycrystalline Al2O3), and polycrystalline aluminum nitride (AlN) 52
Grahic Jump Location
Relative linear thermal expansion (ΔL/L) for silicon and alumina, normalized to 200°C 52
Grahic Jump Location
Relative linear thermal expansion (ΔL/L) for silicon and alumina, normalized to room temperature (+20°C) 52

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In