Damage Mechanics of Surface Mount Technology Solder Joints Under Concurrent Thermal and Dynamic Loading

[+] Author and Article Information
R. Chandaroy

HKS ABAQUS Inc., Detroit, MI

C. Basaran

Electronic Packaging Laboratory, 212 Ketter Hall, State University of New York at Buffalo, Buffalo, NY 14222

J. Electron. Packag 121(2), 61-68 (Jun 01, 1999) (8 pages) doi:10.1115/1.2792669 History: Revised August 05, 1998; Received December 08, 1998; Online November 05, 2007


In the electronic industry, the dominant failure mode for solder joints is assumed to be thermal cycling. When semiconductor devices are used in vibrating environment, such as automotive and military applications, dynamic stresses contribute to the failure mechanism of the solder joint, and can become the dominant failure mode. In this paper, a damage mechanics based unified constitutive model for Pb40/Sn60 solder joints has been developed to accurately predict the thermomechanical behavior of solder joints under concurrent thermal and dynamic loading. It is shown that simultaneous application of thermal and dynamic loads significantly shorten the fatigue life. Hence, damage induced in the solder joint by the vibrations have to be included, in fatigue life predictions to correctly predict the reliability of solder joints. The common practice of relating only thermal cycling induced inelastic strain to fatigue life can be inadequate to predict solder joint reliability. A series of parametric studies were conducted to show that contrary to popular opinion all dynamic loading induced strains are not elastic. Hence, vibrations can significantly affect the fatigue life and reliability of solder joints in spite of their small mass.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In