Thermal Stresses in Layered Electronic Assemblies

[+] Author and Article Information
Z. Q. Jiang, Y. Huang, A. Chandra

Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931

J. Electron. Packag 119(2), 127-132 (Jun 01, 1997) (6 pages) doi:10.1115/1.2792218 History: Received June 29, 1996; Online November 06, 2007


Thermal stresses in layered electronic assemblies are one of the causes of the mechanical failure of electronic packages. A simple but accurate method of estimating these thermal stresses is needed for the design of these packages. A simple approach based on beam theory exists, but it suffers from nonequilibrium of the peeling stress distribution. An improved method that overcomes this drawback is proposed here. For layered electronics with thin adhesives, simple analytical expressions are obtained for interfacial shear stress and peeling stress, as well as for other stress components. The finite element method is used to verify these solutions. It shows excellent agreement between the finite element results and these simple solutions, especially when the moduli of adhesive layers are significantly lower than the moduli of the other layers. This method provides an accurate estimate of thermal stresses for use in package design involving thin and compliant interface or adhesive layers.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In