0
TECHNICAL PAPERS

Vibration Induced Fatigue Life Estimation of Corner Leads of Peripheral Leaded Components

[+] Author and Article Information
Sidharth, D. B. Barker

CALCE Electronic Packaging Research Center, University of Maryland, College Park, MD 20742

J. Electron. Packag 118(4), 244-249 (Dec 01, 1996) (6 pages) doi:10.1115/1.2792159 History: Received December 01, 1995; Revised July 01, 1996; Online December 05, 2007

Abstract

The rapid advancement of integrated circuits and associated electronic technologies have placed increasing demands on electronic packaging and its material structures in terms of the reliability requirements. In addition to the thermally induced stresses, electronic packages often experience dynamic external loads during shipping, handling, and/or operation. This is especially important for automotive, military, and commercial avionics operating environments. These dynamic loads give rise to large dynamic stresses in the leads causing fatigue failures. For peripheral leaded packages the corner leads are the most highly stressed leads. This paper addresses the determination of the out-of-plane displacement of the corner leads of peripheral leaded components when the local peripheral leaded component/board assembly is subjected to bending moments in two directions. The solution is achieved by using a combination of Finite Element Analysis (FEA), Design of Experiments (DOE), and analytical techniques. The out-of-plane displacement can then be applied as a boundary condition on a local lead model to determine the stresses which in turn can be used to estimate the fatigue life.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In