Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays

[+] Author and Article Information
Kurt A. Estes, Issam Mudawar

Electronic Cooling Research Center, Boiling and Two-Phase Flow Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Electron. Packag 117(4), 323-332 (Dec 01, 1995) (10 pages) doi:10.1115/1.2792112 History: Received June 13, 1994; Revised February 13, 1995; Online November 06, 2007


The performances of free jets and sprays were compared experimentally in cooling a 12.7 × 12.7 mm2 chip in order to ascertain the effects of key parameters on cooling performance and to develop correlations for critical heat flux (CHF) which are applicable to dielectric coolants. Increasing liquid flow rate and subcooling increased CHF for both cooling schemes. At high subcooling, comparable CHF values were attained with both for equal flow rates. However, spray cooling produced much greater CHF at low subcooling than did jet cooling. This phenomenon was found to be closely related to the hydrodynamic structure of the liquid film deposited upon the chip surface. In jet cooling, the film (wall jet), being anchored to the surface only at the impingement zone, was separated from the surface during vigorous boiling due to the momentum of vapor normal to the surface. The individual spray drops were more effective at securing liquid film contact with the surface at low subcooling, which delayed CHF relative to jet cooling with the same flow rate. This paper also discusses practical concerns associated with implementation of each cooling scheme including system reliability and the risk associated with premature CHF during chip power transients.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In