Interfacial Thermal Stresses in Layered Structures: The Stepped Edge Problem

[+] Author and Article Information
Wan-Lee Yin

Georgia Institute of Technology, Atlanta, Georgia 30332

J. Electron. Packag 117(2), 153-158 (Jun 01, 1995) (6 pages) doi:10.1115/1.2792083 History: Received August 01, 1994; Revised March 31, 1995; Online November 06, 2007


The intense, localized stress field produced by a temperature load in a multilayered structure may be significantly affected by the local geometry of the free edge. We examine here the stepped edge problem associated with bonding an elastic layer (silicon chip) to a single or multilayer substrate with a slightly larger length. Stress functions are introduced in various rectangular regions and the continuity of tractions are enforced across all inter-region boundaries. Furthermore, continuity of displacements is enforced across the junction of the two segments of the base laminate. The analysis results indicate that even a minute protrusion of the edge of the base laminate relative to the attached chip may cause significant changes in the peeling and shearing stresses in the end region of the interface.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In