0
TECHNICAL PAPERS

Numerical Study of Forced Convection in a Partially Porous Channel With Discrete Heat Sources

[+] Author and Article Information
H. A. Hadim, A. Bethancourt

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030

J. Electron. Packag 117(1), 46-51 (Mar 01, 1995) (6 pages) doi:10.1115/1.2792066 History: Revised November 10, 1994; Online November 06, 2007

Abstract

A numerical study was performed to analyze steady laminar forced convection in a channel partially filled with a fluid-saturated porous medium and containing discrete heat sources on the bottom wall. Hydrodynamic and heat transfer results are reported for the configuration in which the porous layers are located above the heat sources while the rest of the channel is nonporous. The flow in the porous medium was modeled using the Brinkman-Forchheimer extended Darcy model. Parametric studies were conducted to evaluate the effects of variable heat source spacing and heat source width on heat transfer enhancement and pressure drop in the channel. The results indicate that when the heat source spacing was increased within the range considered, there was a negligible change in heat transfer enhancement while the pressure drop decreased significantly. When the heat source width was decreased, there was a moderate increase in heat transfer enhancement and a significant decrease in pressure drop.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In