Solder Joint Creep and Stress Relaxation Dependence on Construction and Environmental-Stress Parameters

[+] Author and Article Information
R. G. Ross, L. C. Wen, G. R. Mon

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

J. Electron. Packag 115(2), 165-172 (Jun 01, 1993) (8 pages) doi:10.1115/1.2909313 History: Received April 12, 1993; Online April 28, 2008


Creep strain is probably the most important time-dependent damage accrual factor affecting solder joint reliability. Under typical multi-hour loading conditions, creep-induced strain is a complex function of solder metallurgical structure, solder temperature, loading time per cycle, the applied stress, and the spring constant of the combined part/lead/board system. The complex system level creep-fatigue interactions involved in electronic part solder joints are shown to be a strong function of the relative stiffness ratio κ, which is the ratio of the stiffness of the combined solder-lead system to the stiffness of the solder element by itself. For a leadless chip package, κ is close to unity. For a compliant leaded package, κ is typically in the 0.01 to 0.0001 range. Important environmental stress dependencies, including the effects of operating temperature, displacement amplitude due to thermal and mechanical cycling, and cyclic frequency of loading are investigated for different levels of k. Understanding the sensitivity of solder strain range to relative stiffness and these key environmental parameters is important to understanding the behavior of alternative packaging concepts and to achieving robust electronic packaging designs and testiong approaches.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In