0
RESEARCH PAPERS

Heat Transfer Study of Staggered Thin Rectangular Blocks in a Channel Flow

[+] Author and Article Information
Ching Jen Chen, Ramiro H. Bravo

Department of Mechanical Engineering, Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, IA 52242

J. Electron. Packag 113(3), 294-300 (Sep 01, 1991) (7 pages) doi:10.1115/1.2905409 History: Received April 30, 1990; Revised March 17, 1991; Online April 28, 2008

Abstract

In this study, fluid flow and heat transfer in two-dimensional staggered thin rectangular blocks in a channel flow heat exchanger is analyzed by the Finite Analytic Numerical Method. The heat exchanger consists of four staggered thin rectangular blocks at temperature T1 placed inside a channel which is formed by two plates maintained at constant temperature T0 . The fluid is considered to be incompressible and the flow laminar. Flow and heat transfer from the inlet of the heat exchanger to the outlet are simulated by solving Navier-Stokes and energy equations. Results were obtained for different block spacing and different size of the blocks. Computations were made for Reynolds numbers 100, 500, and 1,000, and Prandtl numbers 0.7 and 4.0. The results are presented in the form of velocity vector fields, isotherms, and local and global Nusselt numbers. The characteristics of the heat transfer and pressure drop in different block size and block separation are analyzed. The optimal length of separation between thin blocks and the optimal block length for maximum heat transfer are determined.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In