0
Research Papers

Experimental Investigation of Embedded Micropin-Fins for Single-Phase Heat Transfer and Pressure Drop

[+] Author and Article Information
Chirag R. Kharangate

Department of Mechanical Engineering,
Stanford University,
Stanford, CA 94305
e-mail: chiragrk@stanford.edu

Ki Wook Jung, Joseph Schaadt, Mehdi Asheghi, Kenneth E. Goodson

Department of Mechanical Engineering,
Stanford University,
Stanford, CA 94305

Sangwoo Jung, Daeyoung Kong, Hyoungsoon Lee

School of Mechanical Engineering,
Chung-Ang University,
Seoul 06974, South Korea

Madhusudan Iyengar, Chris Malone

Google LLC,
Mountain View, CA 94043

1Corresponding author.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received November 30, 2017; final manuscript received February 23, 2018; published online May 9, 2018. Assoc. Editor: Ankur Jain.

J. Electron. Packag 140(2), 021001 (May 09, 2018) (12 pages) Paper No: EP-17-1126; doi: 10.1115/1.4039475 History: Received November 30, 2017; Revised February 23, 2018

Three-dimensional (3D) stacked integrated circuit (IC) chips offer significant performance improvement, but offer important challenges for thermal management including, for the case of microfluidic cooling, constraints on channel dimensions, and pressure drop. Here, we investigate heat transfer and pressure drop characteristics of a microfluidic cooling device with staggered pin-fin array arrangement with dimensions as follows: diameter D = 46.5 μm; spacing, S ∼ 100 μm; and height, H ∼ 110 μm. Deionized single-phase water with mass flow rates of m˙ = 15.1–64.1 g/min was used as the working fluid, corresponding to values of Re (based on pin fin diameter) from 23 to 135, where heat fluxes up to 141 W/cm2 are removed. The measurements yield local Nusselt numbers that vary little along the heated channel length and values for both the Nu and the friction factor do not agree well with most data for pin fin geometries in the literature. Two new correlations for the average Nusselt number (∼Re1.04) and Fanning friction factor (∼Re−0.52) are proposed that capture the heat transfer and pressure drop behavior for the geometric and operating conditions tested in this study with mean absolute error (MAE) of 4.9% and 1.7%, respectively. The work shows that a more comprehensive investigation is required on thermofluidic characterization of pin fin arrays with channel heights Hf < 150 μm and fin spacing S = 50–500 μm, respectively, with the Reynolds number, Re < 300.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bohr, M. T. , 1995, “Interconnect Scaling—The Real Limiter to High Performance ULSI,” International Electron Devices Meeting (IEDM'95), Washington, DC, Dec. 10–13, pp. 241–244.
Lau, J. H. , 2014, “Overview and Outlook of Three-Dimensional Integrated Circuit Packaging, Three-Dimensional Si Integration, and Three-Dimensional Integrated Circuit Integration,” ASME J. Electron. Packag., 136(4), p. 040801. [CrossRef]
Khan, N. H. , Alam, S. M. , and Hassoun, S. , 2009, “System-Level Comparison of Power Delivery Design for 2D and 3D ICs,” IEEE International Conference on 3D System Integration (3DIC), San Francisco, CA, Sept. 28–30, pp. 1–7.
Bamalet, M. , List, S. , Stucchi, A. S. , Van Hove, M. , Cartuyvels, R. , Beyer, G. , and Maex, K. , 2006, “Performance Comparison of Interconnect Technology and Architecture Options for Deep Submicron Technology Nodes,” International Interconnect Technology Conference, Burlingame, CA, June 5–7, pp. 202–204.
Zhang, Y. , Zheng, L. , and Bakir, M. , 2013, “3-D Stacked Tier Specific Microfluidic Cooling for Heterogeneous 3-D ICs,” IEEE Trans. Compon., Packag., Manuf. Technol., 3(11), pp. 1811–1819. [CrossRef]
Ong, C. L. , Paredes, S. , Sridhar, A. , Michel, B. , and Brunschwiler, T. , 2014, “Radial Hierarchical Microfluidic Evaporative Cooling for 3-d Integrated Microprocessors,” Fourth European Conference on Microfluidics, Limerick, Ireland, Dec. 10–12, Paper No. μFLU 14-6.
Madhour, Y. , d'Entremont, B. P. , Marcinichen, J. B. , Michel, B. , and Thome, J. R. , 2014, “Modeling of Two-Phase Evaporative Heat Transfer in Three-Dimensional Multicavity High Performance Microprocessor Chip Stacks,” ASME J. Electron. Packag., 136(2), p. 021006. [CrossRef]
Drummond, K. P. , Weibel, J. A. , Garimella, S. V. , Back, D. , Janes, D. B. , Sinanis, M. D. , and Peroulis, D. , 2016, “Evaporative Intrachip Hotspot Cooling With a Hierarchical Manifold Microchannel Heat Sink Array,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, May 31–June 1, pp. 307–315.
Schultz, M. , Yang, F. , Colgan, E. , Polastre, R. , Dang, B. , Tsang, C. , Gaynes, M. , Parida, P. , Knickerbocker, J. , and Chainer, T. , 2016, “Embedded Two-Phase Cooling of Large Three-Dimensional Compatible Chips With Radial Channels,” ASME J. Electron. Packag., 138(2), p. 021005. [CrossRef]
Asrar, P. , Zhang, X. , Green, C. E. , Kottke, P. A. , Sarvey, T. E. , Fedorov, A. , Bakir, M. S. , and Joshi, Y. K. , 2016, “Flow Visualization of Two Phase Flow of R245fa in a Microgap With Integrated Staggered Pin Fins,” 32nd IEEE Thermal Measurement, Modeling and Management Symposium (SEMI-THERM), San Jose, CA, Mar. 14–17, pp. 86–89.
Lu, Z. , Salamon, T. R. , Narayanan, S. , Bagnall, K. R. , Hanks, D. F. , Antao, D. S. , Barabadi, B. , Sircar, J. , Simon, M. E. , and Wang, E. N. , 2016, “Design and Modeling of Membrane-Based Evaporative Cooling Devices for Thermal Management of High Heat Fluxes,” IEEE Trans. Compon., Packag., Manuf. Technol., 6(7), pp. 1056–1065. [CrossRef]
Palko, J. W. , Lee, H. , Zhang, C. , Dusseault, T. J. , Maitra, T. , Won, Y. , Agonafer, D. D. , Moss, J. , Houshmand, F. , Rong, G. , Wilbur, J. D. , Rockosi, D. , Mykyta, I. , Altman, D. , Asheghi, M. , Santiago, J. G. , and Goodson, K. E. , 2017, “Extreme Two-phase Cooling From Laser-Etched Diamond and Conformal, Template Fabricated Microporous Copper,” Adv. Funct. Mater., 27(45), p. 1703265. [CrossRef]
Falsetti, C. , Magnini, M. , and Thome, J. R. , 2017, “Flow Boiling Heat Transfer and Pressure Drops of R1234ze(E) in a Silicon Micro-Pin Fin Evaporator,” ASME J. Electron. Packag., 139(3), p. 031008. [CrossRef]
Tuckerman, D. B. , and Pease, R. F. W. , 1981, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett., 2(5), pp. 126–129. [CrossRef]
Harms, T. M. , Kazmierczak, M. J. , and Cerner, F. M. , 1999, “Developing Convective Heat Transfer in Deep Rectangular Microchannels,” Int. J. Heat Fluid Flow, 20(2), pp. 149–157. [CrossRef]
Lee, P.-S. , Garimella, S. V. , and Liu, D. , 2005, “Investigation of Heat Transfer in Rectangular Microchannels,” Int. J. Heat Mass Transfer, 48(9), pp. 1688–1704. [CrossRef]
Peles, Y. , Kosar, A. , Mishra, C. , Kuo, C.-J. , and Schneider, B. , 2005, “Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink,” Int. J. Heat Mass Transfer, 48(17), pp. 3615–3627. [CrossRef]
Qu, W. , and Siu-Ho, A. , 2008, “Liquid Single-Phase in an Array of Micro-Pin-Fin—Part I: Heat Transfer Characteristics,” ASME J. Heat Transfer, 130(12), p. 122402. [CrossRef]
Colgan, E. G. , Furman, B. , Gaynes, M. , LaBianca, N. , Magerlein, J. H. , Polastre, R. , Bezama, R. , Marston, K. , and Schmidt, R. , 2007, “High Performance and Subambient Silicon Microchannel Cooling,” ASME J. Heat Transfer, 129(8), pp. 1046–1051. [CrossRef]
Colgan, E. G. , Furman, B. , Gaynes, M. , Graham, W. S. , LaBianca, N. , Magerlein, J. H. , Polastre, R. , Rothwell, M. B. , Benzema, R. J. , Choudhary, R. , Marston, K. C. , Toy, H. , Walkil, J. , Zitz, J. A. , and Schmidt, R. R. , 2007, “A Practical Implementation of Silicon Microchannel Coolers for High Power Chips,” IEEE Trans. Compon. Packag. Technol., 30(2), pp. 218–225. [CrossRef]
Wälchli, R. , Brunschwiler, T. , Michel, B. , and Poulikakos, D. , 2010, “Combined Local Microchannel-Scale CFD Modeling and Global Chip Scale Network Modeling for Electronic Cooling Designs,” Int. J. Heat Mass Transfer, 53(5–6), pp. 1004–1014. [CrossRef]
Escher, W. , Michel, B. , and Poulikakos, D. , 2010, “A Novel High Performance, Ultrathin, Heat Sink for Electronics,” Int. J. Heat Fluid Flow, 31(4), pp. 586–598. [CrossRef]
Zukauskas, A. , 1972, “Heat Transfer From Tubes in Crossflow,” Advances in Heat Transfer, Vol. 8, Academic, New York, pp. 93–160. [CrossRef]
Hwang, T. H. , and Yao, S. C. , 1986, “Crossflow Heat Transfer in Tube Bundles at Low Reynolds Numbers,” ASME J. Heat Transfer, 108(3), pp. 697–700. [CrossRef]
Armstrong, J. , and Winstanley, D. , 1988, “A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications,” ASME J. Turbomach., 110(1), pp. 94–103. [CrossRef]
Chyu, M. K. , 1990, “Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet,” ASME J. Heat Transfer, 112(4), pp. 926–932. [CrossRef]
Khan, W. A. , 2004, “Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada. https://uwspace.uwaterloo.ca/handle/10012/947
Marques, C. , and Kelly, K. W. , 2004, “Fabrication and Performance of a Pin Fin Micro Heat Exchanger,” ASME J. Heat Transfer, 126(3), pp. 434–444. [CrossRef]
Short , B. E., Jr. , Raad, P. E. , and Price, D. C. , 2002, “Performance of Pin Fin Cast Aluminum Coldwalls—Part I: Friction Factor Correlation,” J. Thermophys. Heat Transfer, 16(3), pp. 389–396. [CrossRef]
Short , B. E., Jr. , Raad, P. E. , and Price, D. C. , 2002, “Performance of Pin Fin Cast Aluminum Coldwalls—Part II: Colburn j-Factor Correlations,” J. Thermophys. Heat Transfer, 16(3), pp. 397–403. [CrossRef]
Kosar, A. , Mishra, C. , and Peles, Y. , 2005, “Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins,” ASME J. Fluids Eng., 127(3), pp. 419–430. [CrossRef]
Kosar, A. , and Peles, Y. , 2006, “Convective Flow of Refrigerant R-123 Across a Bank of Micro Pin Fins,” Int. J. Heat Mass Transfer, 49(17–18), pp. 3142–3155. [CrossRef]
Prasher, R. S. , Dirner, J. , Chang, J. , Myers, A. , Chau, D. , He, D. , and Prstic, S. , 2007, “Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid,” ASME J. Heat Transfer, 129(2), pp. 141–153. [CrossRef]
Adewumi, O. O. , Bello-Ochende, T. , and Meyer, J. P. , 2013, “Constructal Design of Combined Microchannel and Micro Pin Fins for Electronic Cooling,” Int. J. Heat Mass Transfer, 66, pp. 315–323. [CrossRef]
Mohammadi, A. , and Peles, A. , 2017, “Hydrodynamic and Thermal Performance of Microchannels With Different Staggered Arrangements of Cylindrical Micro Pin Fins,” ASME J. Heat Transfer, 139(6), p. 062402. [CrossRef]
Mohammadi, A. , and Peles, A. , 2016, “Hydrodynamic and Thermal Performance of Microchannels With Different In-Line Arrangements of Cylindrical Micro Pin Fins,” ASME J. Heat Transfer, 138(12), p. 122403. [CrossRef]
Siu-Ho, A. , Qu, W. , and Pfefferkorn, F. , 2007, “Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Pin-Fin Heat Sink,” ASME J. Electron. Packag., 129(4), pp. 479–487. [CrossRef]
Tullius, J. F. , Tullius, T. K. , and Bayazitoglu, Y. , 2012, “Optimization of Short Micro Pin Fins in Minichannels,” Int. J. Heat Mass Transfer, 55(15–16), pp. 3921–3932. [CrossRef]
Wan, Z. , and Joshi, J. , 2017, “Pressure Drop and Heat Transfer Characteristics of Pin Fin Enhanced Microgaps in Single Phase Microfluidic Cooling,” Int. J. Heat Mass Transfer, 115(Pt. A), pp. 115–126. [CrossRef]
Brunschwiler, T. , Michel, B. , Rothuizen, H. , Kloter, U. , Wunderle, B. , Oppermann, H. , and Reichl, H. , 2009, “Interlayer Cooling Potential in Vertically Integrated Packages,” Microsyst. Technol., 15(1), pp. 57–74. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Overall microfabrication process of embedded liquid cooling device with micropin-fin arrays

Grahic Jump Location
Fig. 2

(a) A bonded Si-Pyrex wafer after anodic bonding process. (b) Location of five RTDs in the 1 cm × 1 cm heated region (on the backside of the pin fins) marked on the Si sample. (c) Microscopic top-view image of current pin fins sample.

Grahic Jump Location
Fig. 3

(a) Isometric view of the test module and its components, (b) cross-sectional side view of the test module (not to scale), and (c) photo of the assembled test module

Grahic Jump Location
Fig. 4

(a) Schematic of the flow loop and (b) photo of the test facility

Grahic Jump Location
Fig. 5

Wall temperature longitudinal variations along the heater (RTDs are along the centerline of the 1 cm wide chip) and fluid temperature variation along the channel for the corresponding test case for heat fluxes of: (a) 45.1–48.1 W/cm2 and (b) 66.3–71.1 W/cm2

Grahic Jump Location
Fig. 6

Local Nusselt number variation along the longitudinal direction of the chip for: (a) m˙ = 15.1–15.3 g/min, (b) m˙ = 31.1–31.3 g/min, (c) m˙ = 45.6–46.4 g/min, and (d) m˙ = 62.3–64.1 g/min

Grahic Jump Location
Fig. 7

Average Nusselt number versus Reynolds number

Grahic Jump Location
Fig. 8

Comparison of experimentally determined axially averaged Nusselt number with predictions based on correlations of: (a) present study, (b) Kosar and Peles [32], (c) Prasher et al. [33], (d) Qu and Siu-Ho [18], and (e) Tullius et al. [38]

Grahic Jump Location
Fig. 9

(a) Comparison of Nusselt number predictions based on correlations from present study with experimental data from Wan and Joshi [39]; comparison of Nusselt number predictions based on correlations from present study with computational fluid dynamics simulations data from Mohammadi and Peles [35] for (b) ST = 75 μm, SL = 75 μm, (c) ST = 75 μm, SL = 150 μm, (d) ST = 150 μm, SL = 75 μm, and (e) ST = 150 μm, SL = 150 μm

Grahic Jump Location
Fig. 10

Fanning friction factor versus Reynolds number

Grahic Jump Location
Fig. 11

Comparison of experimentally determined fanning friction factor with predictions based on correlations of: (a) present study, (b) Kosar et al. [31], (c) Prasher et al. [33], (d) Brunschwiler et al. [40], and (e) Tullius et al. [38]

Grahic Jump Location
Fig. 12

(a) Comparison of Fanning friction factor predictions based on correlation from present study with experimental data from Wan and Joshi [39]; comparison of Fanning friction factor predictions based on correlation from present study with computational fluid dynamics simulations data from Mohammadi and Peles [35] for (b) ST = 75 μm, SL = 75 μm, (c) ST = 75 μm, SL = 150 μm, (d) ST = 150 μm, SL = 75 μm, and (e) ST = 150 μm, SL = 150 μm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In