0
Review Article

Two-Phase Thermal Ground Planes: Technology Development and Parametric Results

[+] Author and Article Information
Avram Bar-Cohen

Fellow ASME
Defense Advanced Research Project
Agency (DARPA)/Microsystems Technology Office (MTO),
675 North Randolph Street,
Arlington, VA 22203
e-mail: abc@darpa.mil

Kaiser Matin

Mem. ASME
System Planning Corporation,
3601 Wilson Blvd,
Arlington, VA 22201
e-mail: kaiser.matin.ctr@darpa.mil

Nicholas Jankowski

Mem. ASME
U.S. Army Research Laboratory,
2800 Powder Mill Rd,
Adelphi, MD 20783
e-mail: Nicholas.Jankowski@us.army.mil

Darin Sharar

General Technical Services, LLC,
3100 New Jersey 138,
Wall Township, NJ 07719
e-mail: darin.j.sharar.ctr@mail.mil

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received August 4, 2014; final manuscript received October 10, 2014; published online November 14, 2014. Assoc. Editor: Ashish Gupta.This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.

J. Electron. Packag 137(1), 010801 (Nov 14, 2014) (9 pages) Paper No: EP-14-1069; doi: 10.1115/1.4028890 History: Received August 04, 2014

Defense Advanced Research Project Agency's (DARPA's) thermal ground plane (TGP) effort was aimed at combining the advantages of vapor chambers or two-dimensional (2D) heat pipes and solid conductors by building thin, high effective thermal conductivity, flat heat pipes out of materials with thermal expansion coefficients that match current electronic devices. In addition to the temperature uniformity and minimal load-driven temperature variations associated with such two phase systems, in their defined parametric space, flat heat pipes are particularly attractive for Department of Defense and commercial systems because they offer a passive, reliable, light-weight, and low-cost path for transferring heat away from high power dissipative components. However, the difference in thermal expansion coefficients between silicon or ceramic microelectronic components and metallic vapor chambers, as well as the need for a planar, chip-size attachment surface for these devices, has limited the use of commercial of the shelf flat heat pipes in this role. The primary TGP goal was to achieve extreme lateral thermal conductivity, in the range of 10 kW/mK–20 kW/mK or approximately 25–50 times higher than copper and 10 times higher than synthetic diamond, with a thickness of 1 mm or less.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bar-Cohen, A. , Matin, K. , Bloschock, K. , Jankowski, N. , and Darin, S. , 2014, “Two-Phase Thermal Ground Planes: Technology Development and Parametric Results Final Report,” DARPA Thermal Ground Plane (TGP) DOC Report No. 21479.
Oshman, C. , Shi, B. , Li, C. , Yang, R. G. , Lee, Y. C. , and Bright, V. M. , 2010, “Fabrication and Testing of a Flat Polymer Micro Heat Pipe,” 15th International Solid-State Sensors, Actuators and Microsystems Conference, (TRANSDUCERS 2009), Denver, CO, June 21–25, pp. 1999-2002.
Oshman, C. , Qian, L. , Li-Anne, L. , Ronggui, Y. , Bright, V. M. , and Lee, Y. C. , 2012, “Flat Flexible Polymer Heat Pipes,” J. Micromech. Microeng., 23(1), p. 015001. [CrossRef]
Yang, R. G. , Lee, Y. C. , Bright, V. M. , Li, C. , Peterson, G. P. , Oshman, C. , Shi, B. , and Cheng, J. , 2011, “Flexible Thermal Ground Plane and Manufacturing the Same,” U.S. Patent No. 20110017431 A1.
Oshman, C. J. , 2012, “Development, Fabrication, and Experimental Study of Flat Polymer Micro Heat Pipes,” Ph.D. dissertation, University of Colorado, Boulder, CO.
Oshman, C. , Shi, B. C. L. , Ronggui, Y. , Lee, Y. C. , Peterson, G. P. , and Bright, V. M. , 2011, “The Development of Polymer-Based Flat Heat Pipes,” IEEE J. Microelectromech. Syst., 20(2), pp. 410–417. [CrossRef]
Hwang, G. S. , Nam, Y. , Flemming, E. , Dussinger, P. , Ju, Y. S. , and Kaviany, M. , 2010, “Multi-Artery Heat Pipe Spreader: Experiment,” Int. J. Heat Mass Transfer, 53(13–14), pp. 2662–2669. [CrossRef]
Hwang, G. S. , Nam, Y. , Flemming, E. , Dussinger, P. , Ju, Y. S. , and Kaviany, M. , 2011, “Multi-Artery Heat-Pipe Spreader: Lateral Liquid Supply,” Int. J. Heat Mass Transfer, 54(11–12), pp. 2334–2340. [CrossRef]
Nam, Y. , Sharratt, S. , and Ju, Y. S. , 2011, “Characterization and Modeling of the Heat Transfer Performance of Nanostructured Cu Micropost Wicks,” ASME J. Heat Transfer, 133(10), p. 101502. [CrossRef]
Dussinger, P. , Ju, Y. S. , Catton, I. , and Kaviany, M. , 2012, “High Heat Flux, High Power, Low Resistance, Low CTE Two-Phase Thermal Ground Plans for Direct Die Attach Applications,” Government Microcircuit Applications and Critical Technology Conference (GOMACTech-12), Las Vegas, NV, March 19–22, Paper No. 22.4.
Ju, Y. S. , Kaviany, M. , Nam, Y. , Sharratt, S. , Hwang, G. S. , Catton, I. , and Fleming, E. , 2013, “Planar Vapor Chamber With Hybrid Evaporator Wicks for the Thermal Management of High-Heat-Flux and High-Power Optoelectronic Devices,” Int. J. Heat Mass Transfer, 60, pp. 163–169. [CrossRef]
Cai, Q. , Bhunia, A. , Tsai, C. , Kendig, M. W. , and DeNatale, J. F. , 2013, “Studies of Material and Process Compatibility in Developing Compact Silicon Vapor Chambers,” J. Micromech. Microeng., 23(6), p. 065003. [CrossRef]
Cai, Q. , and Chen, Y. C. , 2012, “Investigations of Bi-Porous Wick Structure Dryout,” ASME J. Heat Transfer, 134(2), p. 021503. [CrossRef]
Cai, Q. , Chen, B. C. , Tsai, C. , and Chen, C. L. , 2010, “Development of Scalable Silicon Heat Spreader for High Power Electronic Devices,” ASME J. Therm. Sci. Eng. Appl., 1(4), p. 041009. [CrossRef]
Cai, Q. , and Chen, L. C. , 2010, “Design and Test of CNT Biwick Structure for High Heat Flux Phase Change Heat Transfer,” ASME J. Heat Transfer, 132(5), p. 052403. [CrossRef]
Srivastava, N. , Din, C. , Judson, A. , MacDonald, N. C. , and Meinhart, C. D. , 2010, “A Unified Scaling Model for Flow Through a Lattice of Microfabricated Posts,” Lab Chip, 10(9), pp. 1148–1152. [CrossRef] [PubMed]
Ding, C. , Soni, G. , Bozorgi, P. , Piorek, B. D. , Meinhart, C. D. , and MacDonald, N. C. , 2010, “A Flat Heat Pipe Architecture Based on Nanostructured Titania,” J. Microelecmech. Syst., 19(4), pp. 878–884. [CrossRef]
Dhillon, N. S. , Chan, M. W. , Cheng, J. C. , and Pisano, A. P. , 2011, “Noninvasive Hermetic Sealing of Degassed Liquid Inside a Microfluidic Device Based on Induction Heating,” International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Seoul, South Korea, Nov. 15–18, pp. 197–200.
Dhillon, N. S. , Hogue, C. , Cheng, J. C. , and Pisano, A. P. , 2011, “Experimental Investigation of Thin-Film Evaporation in an Open-Loop Columnated Micro-Evaporator,” International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Seoul, South Korea, Nov. 15–18, pp. 205–208.
De Bock, H. P. , Chauhan, S. , Chamarthy, P. , Eastman, C. , Weaver, S. , Whalen, B. P. , Deng, T. , Russ, B. , Gerner, F. M. , Johnson, D. , Courson, D. , Leland, Q. , and Yerkes, K. , 2008, “Development and Experimental Validation of a Micro/Nano Thermal Ground Plane,” ASME Paper No. AJTEC2011-44646.
Varanasi, K. K. , Deng, T. , Chamarthy, P. , Chauhan, S. , Bock, P. , Kulkarni, A. , Mandrusiak, G. , Rush, B. , Russ, B. , Denault, L. , Weaver, S. , Gerner, F. , Leland, Q. , and Yerkes, K. , 2009, “Engineered Nanostructures for High Thermal Conductivity Substrates,” Nanotech Conference and Expo, Houston, TX, May 3–7, pp. 505–508.
De Bock, H. P. , Chauhana, S. , Chamarthya, P. , Stanton, E. , Weaver, S. E. , Denga, T. , Gerner, F. M. , Ababnehb, M. T. , and Varanasi, K. , 2010, “On the Charging and Thermal Characterization of a Micro/Nano Structured Thermal Ground Plane,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, June 2–5.
Weibel, J. A. , Kim, S. S. , Fisher, T. S. , and Garimella, S. V. , 2012, “Carbon Nanotube Coatings for Enhanced Capillary-Fed Boiling From Porous Microstructures,” Nanoscale and Microscale Thermophys. Eng., 16(1), pp. 1–17. [CrossRef]
Weibel, J. A. , Kousalya, A. S. , Fisher, T. S. , and Garimella, S. V. , 2012, “Characterization and Nanostructured Enhancement of Boiling Incipience in Capillary-Fed Ultra-Thin Sintered Powder Wicks,” 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, May 30–June 1, pp. 119–129.
Ranjan, R. , Murthy, J. Y. , Garimella, S. V. , Altman, D. H. , and North, M. T. , 2012, “Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications,” IEEE Trans. Compon. Packag. Manuf. Technol., 2(9), pp. 1465–1478. [CrossRef]
Altman, D. H. , Gupta, A. , Dubrowski, T. E. , Sharar, D. J. , Jankowski, N. R. , and North, M. T. , 2013, “Analysis and Characterization of Thermal Expansion-Matched Wick-Based Multi-Chip Passive Heat Spreaders in Static and Dynamic Environments,” ASME Paper No. InterPACK2013-73087.
Givler, R. C. , and Martinez, M. J. , 2009, “Modeling of Pulsating Heat Pipes,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND2009-4520.
Ma, H. , Thompson, S. M. , Hathaway, A. A. , Smoot, C. D. , Wilson, C. , Young, R. M. , Greenberg, L. , Osick, B. R. , Campen, S. , Morgan, B. C. , Sharar, D. , and Jankowski, N. , 2011, “Experimental Investigation of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading,” ASME Paper No. IMECE2011-64821.
Thompson, S. , Tessler, B. S. , Ma, H. , Smith, D. , and Sobel, A. , 2013, “Ultrahigh Thermal Conductivity of Three-Dimensional Flat-Plate Oscillating Heat Pipes for Electromagnetic Launcher Cooling,” IEEE Trans. Plasma Sci., 41(5), pp. 1326–1331. [CrossRef]
Thompson, S. M. , Hathaway, A. A. , Smoot, C. D. , Wilson, C. A. , Ma, H. B. , Young, R. M. , Greenberg, L. , Osick, B. R. , Van Campen, S. , Morgan, B. C. , Sharar, D. , and Jankowski, N. , 2011, “Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading,” ASME J. Heat Transfer, 133(10), p. 104504. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

Variation of maximum heat flux with length for Phase III DARPA TGPs

Grahic Jump Location
Fig. 3

Effective thermal conductivity of Phase III TGPs

Grahic Jump Location
Fig. 2

Photograph of ARL DARPA TGP acceleration testing system

Grahic Jump Location
Fig. 5

Flexible TGP construction by University of Colorado–Boulder

Grahic Jump Location
Fig. 6

Thermal resistance of flexible polymer TGP at different loads and bends

Grahic Jump Location
Fig. 13

Uncertainty in thermal conductivity measurement

Grahic Jump Location
Fig. 12

GE TGP charging setup

Grahic Jump Location
Fig. 14

Test vehicles for Raytheon TGP

Grahic Jump Location
Fig. 15

Thermal resistance of Raytheon TGP at various loads

Grahic Jump Location
Fig. 16

Raytheon TGP due to g-loading

Grahic Jump Location
Fig. 7

Effect of applied heat flux versus wall superheat

Grahic Jump Location
Fig. 8

Teledyne TGP biwick structures

Grahic Jump Location
Fig. 9

Biwick dryout hysteresis

Grahic Jump Location
Fig. 10

SEM Image of Ti structure of UCSB TGP

Grahic Jump Location
Fig. 11

Laser welded Ti-based TGP

Grahic Jump Location
Fig. 17

Effective thermal conductivity of NG 3D FP-OHP

Grahic Jump Location
Fig. 18

Variation of thermal resistance with power dissipation for Phase III DARPA TGP

Grahic Jump Location
Fig. 19

Effective thermal conductivity at rest and at 10 g for Phase II DARPA TGPs

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In